SPICE: Strange hadrons as a Precision tool for strongly InteraCting systEms

Progress in mass measurement of light hypernuclei and high-precision spectrometer calibration method at MAMI

Ryoko Kino Tohoku Univ.

for the A1 hypernuclear Collaboration

May 15, 2024

ECT*

European Centre for Theoretical studies in nuclear physics and related areas Trento, Italy

A Binding Energy of Hypertriton

^[2] S. Acharya *et al.*, Phys. Rev. Lett. 131(2023), 102302
[3] STAR, Nature Phys. 16 (2020) 4, 409-412 [4] M. Juric, Nucl. Phys. B 52, 1 (1973) 1-30

SPICE - Ryoko Kino, Tohoku Univ.

Decay-pion spectroscopy at MAinz-MIcrotron

- continuous electron accelerator
- > accelerates up to 1.5 GeV with three Race-Track-Microtrons and HDSM

- Beam energy: Max.1508 MeV
- Beam intensity: Max.~100 µA
- Duty factor: 100%

May 15, 2024

- Energy resolution: $\Delta E \sim 110 \text{ keV}(\text{FWHM})$
- Beam emittance [vertical]: $< 1.2\pi \times \mu m \times mrad$ (rms)

MESA

A4

A1 Hal

A2

Decay-pion spectroscopy at MAMI

Magnetic spectrometer A & C Measuring pion momentum

- > Offer high momentum resolution of $\Delta p/p \sim 10^{-4}$
- Large solid angle (28 msr), angular range (15° − 160°), and momentum acceptance (20 − 25%)
 → long- target acceptance (50 mm)

Kaos

Detection of Kaons

- \rightarrow Identify hyperon production events
- Short central orbital length (~ 6.4 m) \rightarrow Suitable for short-live kaons ($c\tau$ ~ 3.7 m)
- \triangleright Wide momentum acceptance \rightarrow High yield of kaons

Coincidence events: Kaos \cap (A \cup C)

Previous experiment of Decay-pion spectroscopy

- Result of ⁴_AH from the previous experiment $B_{\Lambda} = 2.12 \pm 0.01 \text{ (stat.)} \pm 0.09 \text{ (syst.) MeV} \quad (2012)$ $B_{\Lambda} = 2.157 \pm 0.005 \text{ (stat.)} \pm 0.077 \text{ (syst.) MeV} \quad (2014)$
- ➤ Two body decays of hypernuclei: ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}@ 114 \text{ MeV/}c$ ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}@ 133 \text{ MeV/}c$

Previous experiment of Decay-pion spectroscopy

- Result of ⁴_AH from the previous experiment $B_{\Lambda} = 2.12 \pm 0.01 \text{ (stat.)} \pm 0.09 \text{ (syst.) MeV} \quad (2012)$ $B_{\Lambda} = 2.157 \pm 0.005 \text{ (stat.)} \pm 0.077 \text{ (syst.) MeV} \quad (2014)$
- ➤ Two body decays of hypernuclei: ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}@ 114 \text{ MeV/}c$ ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}@ 133 \text{ MeV/}c$

We need to... Ensure the yield of ${}^{3}_{\Lambda}$ H

Suppress systematic errors

Previous experiment of Decay-pion spectroscopy

- Result of ⁴_AH from the previous experiment $B_{\Lambda} = 2.12 \pm 0.01 \text{ (stat.)} \pm 0.09 \text{ (syst.) MeV} \quad (2012)$ $B_{\Lambda} = 2.157 \pm 0.005 \text{ (stat.)} \pm 0.077 \text{ (syst.) MeV} \quad (2014)$
- ➤ Two body decays of hypernuclei: $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}@ 114 \text{ MeV/}c$ $^{4}_{\Lambda}H \rightarrow ^{4}He + \pi^{-}@ 133 \text{ MeV/}c$

New experiment

- \Box Ensure the yield of $^{3}_{\Lambda}$ H
- Suppress systematic errors

The new Lithium target system

High-precision beam energy measurement

New Lithium target design

- From Beryllium to Lithium
- Less background as ⁹Be

No hyper-helium with similar decay pion momenta: ${}^{8}_{\Lambda}$ He: 116.47 [MeV/c] ${}^{3}_{\Lambda}$ H: 114.3 MeV/c)

Maximized rate of hypernuclei Beam direction – 45 mm long

⁹Be 27mg/cm², ~40 μ A ~100 times thicker

e-beam Kaos Li plate (width 0.75 mm)linear & rotary motors π Spek-A *e*[–] beam $(\sigma \sim 0.3 \text{ mm})$

Status of the experiment and data analysis

Items	Status
 Parameter adjustment 	done
✓ Particle tracking	done
Particle identification via Kaos	In progress
Momentum calibration of SpekA&C	Data-taking has done last week!

Latest pion momentum distribution

Spectrometer momentum calibration

S. Nagao, Doctoral thesis, Tohoku Uni (2016)

May 15, 2024

Interference of undulator radiation

e⁻

Interference image

- Synchrotron radiation from two undulators
- Phase difference related to the Lorentz factor of the electron beam
- Interference intensity period λ_{osc} : measured with a CMOS camera
- Calculate beam energy: λ_{osc} A B

 $\mathbf{r} = \sqrt{\frac{2N}{light}}$

ator U₂

Beam energy measurement

Relativistic γ via undulator eq.:

$$\gamma = \sqrt{\frac{\lambda_{osc}}{2\lambda_{light}}}$$

The accuracy of gamma depends on:

- Length measurement
- Monochromator-calibration
- Optical alignment
- → The precision of $\Delta E/E \sim 18 \text{ keV} (/200 \text{ MeV})$ is possible **10 times accurate!**

Figure from P. Klag, Ph.D. thesis, JGU Mainz (in preparation)

MAMI vs. Undulator energy measurement

The final systematic error will be less than $\Delta B_{\Lambda} \sim 10 \text{ keV}!$

Summary of the spectrometer calibration experiment

- Beamtime: March 19th April 8th, April 29th May 6th, 2024
- Spectrometer angle: 54 deg \rightarrow yield: 10⁴ counts (/min/ μ A)
- Beam Energy: 5 sets (180, 195, 210, 225, and 420 MeV)
- Multi-foil targets: ¹⁸¹Ta, ¹²C
- Mom. setting: covering both ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H (${}^{3}_{\Lambda}$ H: $\delta p \sim -7\%$, ${}^{4}_{\Lambda}$ H: $\delta p \sim +9\%$)
- Combined with
 beam energy measurement
 via undulator interference

Quite enough data sets than the previous experiment & suppressed systematic errors!

Summary

- > Measuring B_{Λ} of Hypertriton by Decay-pion spectroscopy at MAMI
- Updates from the previous experiments
 - Lithium long targeting system
 - > Momentum calibration method combined with undulator interferometry
- > Analysis status
 - > Particle ID: now ongoing, Absolute momentum will be calibrated
 - **Our goal:** total error of < 10 keV in Λ binding energy!

p^{**u**}