H dibaryon constrained by hypernuclei ECT* THEIA-SPICE Workshop, Trento, Italy, May 2024 Avraham Gal, Hebrew University, Jerusalem, Israel

- Q: does observing $\Lambda\Lambda$ hyp exclusively by weak decay $(\tau_w \sim 10^{-10} \text{ s})$ rule out a deeply bound H(uuddss) ?
- A: ${}_{\Lambda\Lambda}{}^{6}$ He 3-body model gives $\tau_{s}({}_{\Lambda\Lambda}{}^{6}$ He \rightarrow H+⁴He) \gg τ_{w} for $m_{H} \leq m_{\Lambda} + m_{n}$, so a deeply bound H is fine.
- Q: how slow is the $\Delta S=2$ weak decay H $\rightarrow 2n$ with respect to τ (Universe) \approx (13.8 × 10⁹ yrs) ?
- A: constrained by Λ hyp lifetimes, $\tau_w(H \rightarrow 2n) \sim 10^5$ s, by far too short to make H dark-matter candidate.

A. Gal, arXiv:2404.12801

Lessons from Ξ^- capture events in emulsion 2023 ECT* Rockstar Workshop, Trento, Italy, Oct. 2023 E. Friedman, <u>A. Gal</u>, Hebrew Univ., Jerusalem, Israel V_{Ξ} from Ξ^- capture events All five KEK & J-PARC $\Xi^- + {}^{A}Z \rightarrow {}^{A'}_{\Lambda}Z' + {}^{A''}_{\Lambda}Z''$ capture events in light-nuclei emulsion occur in $1p_{\Xi^-}$ nuclear states,

suggesting attractive $V_{\Xi} \geq 20$ MeV.

E. Friedman, A. Gal, PLB 820 (2021) 136555

Questioning E07 $1s_{\Xi^-}$ assignments in ${}^{14}N$

Assigned $1s_{\Xi^-}$ —¹⁴N events reinterpreted as $1p_{\Xi^0}$ —¹⁴C.

E. Friedman, A. Gal, PLB 837 (2023) 137640

Remarks on the elusive H dibaryon time permitting...

 $\begin{array}{l} \textbf{The elusive H dibaryon} \\ \textbf{A stable H(uuddss) predicted by Jaffe PRL 38 (1977) 195} \\ \textbf{H} \sim \mathcal{A}[\sqrt{1/8} \ \Lambda\Lambda + \sqrt{1/2} \ N\Xi - \sqrt{3/8} \ \Sigma\Sigma,]_{I=S=0} \end{array}$

- No H signal in past (K^-, K^+) experiments at AGS-BNL & PS-KEK. Awaiting J-PARC E42.
- Bound H ruled out by STAR study of ΛΛ correlation femtoscopy [PRL 114 (2015) 022301].
- Bound H not ruled out by ALICE study of ΛΛ correlation femto [PLB 797 (2019) 134822].
- Bound H above Λpπ⁻, ~37 MeV below ΛΛ, ruled out by ALICE search for a weakly decaying ΛΛ bound state [PLB 752 (2016) 267].

- Bound H above $\Lambda p\pi^-$ ruled out in Belle study of $\Upsilon(1S,2S)$ decays [PRL 110 (2013) 222002].
- Deeply bound H below Λn , $m_H \leq 2.05$ GeV, ruled out in BaBar's $\Upsilon(2S,3S) \rightarrow H\overline{\Lambda}\overline{\Lambda}$ search [PRL 122 (2019) 072002].
- H is weakly bound in LQCD calculations, e.g., Green,...,Wittig, PRL 127 (2021) 242003.
- $SU(3)_f$ breaking might push it to $\approx 26 \text{ MeV}$ in the $\Lambda\Lambda$ continuum, near N Ξ threshold:

HALQCD Collaboration [NPA 881 (2012) 28] & Haidenbauer-Meißner [NPA 881 (2012) 44].

Hypernuclear Constraints: Nagara event

⁶_{AA}He (KEK-E373) PRL 87 (2001) 212502, PRC 88 (2013) 014003 $B_{AA}({}_{AA}{}^{6}\text{He}_{g.s.})$ =6.91±0.16 MeV, uniquely identified.

- A: Ξ^- capture $\Xi^- + {}^{12}C \rightarrow {}^{6}_{\Lambda\Lambda}He + t + \alpha$
- B: weak decay ${}^{6}_{\Lambda\Lambda}\text{He} \rightarrow {}^{5}_{\Lambda}\text{He} + p + \pi^{-}$ (no ${}^{6}_{\Lambda\Lambda}\text{He} \rightarrow {}^{4}\text{He} + \mathbf{H}$)
- C: ${}_{\Lambda}^{5}$ He nonmesic weak decay to two Z=1 recoils + n Few other weakly decaying ${}_{\Lambda\Lambda}^{A}$ Z hypernuclei identified.

Dark-Matter H Dibaryon?

Work triggered by Farrar's 2003-4 idea that a deeply bound H dibaryon would make a long-lived Dark-Matter particle.

G.R. Farrar, Int'l. J. Theor. Phys. 42 (2003) 1211.
G.R. Farrar, G. Zaharijas, Phys. Rev, D 70 (2004) 014008.
A recent review: G.R.F+Z. Wang, arXiv:2306.03123 [hep-ph].
assuming (i) compact 6q configurations of size down to 0.2 fm and (ii) outdated hard-core BB strong-interaction potentials. Here, we try to do better...

H(uuddss) model wavefunction

- Symmetric L=0, Antisymmetric $\mathbf{1}_S(S=0), \mathbf{1}_F, \mathbf{1}_C$.
- $\Psi_H = N_6 \exp\left(-\frac{\nu}{6}\sum_{i< j}^6 (\vec{r}_i \vec{r}_j)^2\right)$
- $\Psi_H = \psi_{B_a}(\rho_a, \lambda_a) \times \psi_{B_b}(\rho_b, \lambda_b) \times \psi_{B_aB_b}(r)$
- $\psi_{B_aB_b} = \left(\frac{3\nu}{\pi}\right)^{\frac{3}{4}} \exp\left(-\frac{3\nu}{2}r^2\right)$, Need to add SFC factors.
- $< r_{B_a}^2 > = < r_{B_b}^2 > = < r_{B_aB_b}^2 > = \frac{9}{8\nu}, \quad < r_H^2 > = \frac{5}{8\nu}.$

$\sqrt{< r_{\Lambda\Lambda}^2 >}$	(fm) v	s. $B_{\Lambda\Lambda}$	(MeV)
-----------------------------------	--------	-------------------------	-------

$B_{\Lambda\Lambda}$	5	20	50	100	200	300	400
$\sqrt{< r_{\Lambda\Lambda}^2 >}$	2.134	1.206	0.854	0.689	0.560	0.501	0.463
calculated for a short-range potential $C_0^{(\lambda)}\delta_{\lambda}(r)$, $\lambda=4$ fm ⁻¹ ,							
\mathbf{w}	here ($\delta_{\lambda}(r) = \left(\frac{1}{2}\right)$	$\left(\frac{\lambda}{2\sqrt{\pi}}\right)^3 \exp\left(\frac{\lambda}{2\sqrt{\pi}}\right)^3$	$p\left(-\frac{\lambda^2}{4}r^2\right)$	$), \int \delta_{\lambda}($	r) d ³ $r=1$	•

${}_{\Lambda\Lambda}^{6}{\rm He}$ model wavefunction

- Use a $\Lambda \Lambda {}^{4}$ He model inspired by a #EFT study of s-shell $\Lambda\Lambda$ hypernuclei in PLB 797 (2019) 134893 by Contessi-Schaefer-Barnea-Gal-Mareš.
- $\Phi_{\Lambda\Lambda^6 \text{He}} = \phi_{\Lambda\Lambda}(r_{\Lambda\Lambda}) \Phi_{\Lambda\Lambda}(R_{\Lambda\Lambda}) \phi_{\alpha}, \quad \sqrt{\langle r_{\Lambda\Lambda}^2 \rangle} = 3.65 \pm 0.10 \text{ fm.}$
- For Gaussians, $\sqrt{\langle R_{\Lambda\Lambda}^2 \rangle} = \sqrt{\langle r_{\Lambda\Lambda}^2 \rangle}/2$.
- Short-Range suppression: *φ*_{ΛΛ}(r_{ΛΛ}) = (1 - j₀(κr_{ΛΛ})) φ_{ΛΛ}(r_{ΛΛ}), κ=2.534 fm⁻¹ fitting a G-matrix calculation by Maneu-Parreño-Ramos, PRC 98 (2018) 025208.
- To evaluate ${}_{\Lambda\Lambda}{}^{6}$ He $\rightarrow H + {}^{4}$ He decay rate (next page), represent final state by $\tilde{\psi}_{\Lambda\Lambda}(r_{\Lambda\Lambda}) \times \exp{(i\vec{k}_H \cdot \vec{R}_H)}$, where $\tilde{\psi}_{\Lambda\Lambda}(r_{\Lambda\Lambda}) = \psi(r_{\Lambda\Lambda})/\sqrt{1000}$ to account for SFC structure.
- Recall: no short-range suppression for H (1_F BB).

${}_{\Lambda\Lambda}{}^{6}$ He $\rightarrow H + {}^{4}$ He decay rate

- $\Gamma({}^{6}_{\Lambda\Lambda}\text{He} \to H + {}^{4}\text{He}) = \frac{\mu_{H\alpha}k_{H}}{(2\pi\hbar c)^{2}}\int |\langle \Psi_{f}|V_{\Lambda\Lambda}|\Psi_{i}\rangle|^{2} \,\mathrm{d}\vec{k}_{H},$ where $\langle \Psi_{f}|V_{\Lambda\Lambda}|\Psi_{i}\rangle$ is a product of two factors.
- 1st factor: $\langle \tilde{\psi}_{\Lambda\Lambda} | C_0^{(\lambda=4)} \delta_{\lambda=4}(r_{\Lambda\Lambda}) | \tilde{\phi}_{\Lambda\Lambda} \rangle$, where $C_0^{(\lambda=4)} = -152 \text{ MeV} \times \text{fm}^3$ fitted to $a_{\Lambda\Lambda} = -0.8 \text{ fm}$. SRC reduction: a factor of 4 to 5. Altogether this matrix element varies from -59 to -53 keV as $B_{\Lambda\Lambda}$ is increased from 100 to 400 MeV.
- 2nd factor: $\int \exp(i\vec{k}_H \cdot \vec{R}) \Phi_{\Lambda\Lambda}(R) d^3\vec{R}$, overlap integral between a $\Lambda\Lambda - \alpha$ smooth Gaussian $\Phi_{\Lambda\Lambda}(R_{\Lambda\Lambda})$ in ${}_{\Lambda\Lambda}{}^6$ He and the $H - \alpha$ oscillatory plane-wave $\exp(i\vec{k}_H \cdot \vec{R}_H)$. Strong cancellations occur, reducing it as k_H increases.

$B_{\Lambda\Lambda}$ (MeV)	$\mathbf{k}_H ~(\mathbf{fm}^{-1})$	Γ (eV)	au (s)	
100	2.547	$0.782 \cdot 10^{-2}$	$0.841 \cdot 10^{-13}$	
200	3.612	$0.501 \cdot 10^{-8}$	$1.315 \cdot 10^{-7}$	
300	4.377	$0.679 \cdot 10^{-14}$	$0.970 \cdot 10^{-1}$	
400	4.980	$2.436 \cdot 10^{-20}$	$2.703 \cdot 10^4$	
176	3.393	$1.550 \cdot 10^{-7}$	$4.245 \cdot 10^{-9}$	
$B_{++} - 176 \text{ MeV corresponds to } m_{+} - m_{+} \pm m_{-}$				

 ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow H + {}^{4}\text{He} \text{ decay rate } \Gamma \text{ and decay time } \hbar/\Gamma.$

 $B_{\Lambda\Lambda} = 170$ MeV corresponds to $m_H = m_{\Lambda} + m_n$.

- ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow H + {}^{4}\text{He}$ strong-interaction lifetime becomes longer than Λ hypernuclear lifetimes of order 10^{-10} s for m_H below $m_{\Lambda} + m_n$, where decay of H requires a $\Delta S = 2$ H \rightarrow nn weak decay, assuming H is above nn.
- A lower-mass H would be in conflict with nuclear stability limits, e.g. ¹⁶O.

$\Lambda n \to nn$ and $\Lambda \Lambda \to nn$ weak decays

- Figure shows how free-space $\Lambda \to n\pi^0$ weak decay vertex is embedded in one-pion exchange (OPE) diagrams for $\Delta S = 1 \ \Lambda n \to nn$ and $\Delta S = 2 \ \Lambda \Lambda \to nn$ weak transitions in hypernuclei or in H decay.
- For ${}^{1}S_{0}$ transitions, OPE contributes little at the large momentum transfers involved.

$\Lambda n \to nn$ and $\Lambda \Lambda \to nn$ weak decays

- Use low-energy constants (LECs) $C_{\Delta S}^{(\lambda)}$ proportional to g_w for $\Lambda n \to nn$ and to g_w^2 for $\Lambda \Lambda \to nn$ in 1S_0 transitions, thereby replacing $g_s(\text{OPE}) \approx 13.6$ effectively by $g_s \sim 1$.
- EFT approach for nonmesonic weak decay of hypernuclei: Parreño-Bennhold-Holstein, PRC 70 (2004) 051601(R).

H \rightarrow nn decay rate Γ_H and decay time $\tau_H = \hbar / \Gamma_H$

$B_{\Lambda\Lambda}$ (MeV)	$\mathbf{k}_n \; (\mathbf{fm}^{-1})$	Γ_H (eV)	$ au_H$ (s)
176	2.109	$2.366 \cdot 10^{-21}$	$2.782 \cdot 10^{5}$
200	1.955	$2.211 \cdot 10^{-21}$	$2.977\cdot 10^5$
300	1.130	$1.365 \cdot 10^{-21}$	$4.820 \cdot 10^{5}$

 $B_{\Lambda\Lambda}=176$ MeV corresponds to $m_H=m_{\Lambda}+m_n$.

- Extract C₁^(λ) for a given λ by evaluating Γ_n(C₁), Γ_n = v_{Λn} σ_{Λn→nn} ρ_n, requiring Γ_n = ½Γ_{hyp} where Γ_{hyp} = ħ/(τ_{hyp} ≈ 210 ps).
 Use C₂^(λ) = q_w C₁^(λ) = (G_F m_π²) C₁^(λ) = (2.21 × 10⁻⁷) C₁^(λ).
- $\Gamma(H \to nn) = \frac{\mu_{nn} k_n}{(2\pi\hbar c)^2} \int |\langle \exp(i\vec{k}_n \cdot \vec{r})|C_2^{(\lambda)}\delta_\lambda(\vec{r})|\tilde{\psi}_{\Lambda\Lambda}(r)\rangle|^2 d\hat{\vec{k}}_n.$
- Weaker cancellations over a smaller range than for $\Gamma({}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow \text{H} + {}^{4}\text{He}).$

Deeply Bound H Dibaryon: Summary

- Observing ΛΛ hypernuclei by their weak decay does not rule out a deeply bound H(uuddss) dibaryon.
- Assuming H is deeply bound, between nn and An thresholds, its ∆S = 2 H→nn lifetime is shorter than 1 yr, disqualifying it from serving as a Dark-Matter particle candidate.

Thanks for your attention!

3 backup 2023 transparencies J-PARC E07 ¹⁴N events

 $1s_{\Xi^-}$ states reported only in ${}^{14}N$

$1s_{\Xi^-}$ interpreted as $1p_{\Xi^0}$

Ξ^- capture: Summary & Outlook

- $V_{\Xi}(\rho_0)=24.3\pm0.8 \Rightarrow 21.9\pm0.7$ MeV with Pauli from twin- Λ two-body Ξ^- capture events.
- KEK-E224 & BNL-E885: $V_{\Xi}(\rho_0) \approx 16 \pm 2 \text{ MeV}$.
- BNL-E906: $V_{\Xi}(\rho_0) = 17 \pm 6 \text{ MeV} (QF \text{ in } {}^9\text{Be}).$
- EFT & LQCD suggest $V_{\Xi}(\rho_0) \leq 10$ MeV.
- SHF using E07 ¹⁴N input: V_Ξ≈14±1 MeV, with attractive ΞN & repulsive ΞNN terms.
- Why all E07 Ξ_{1s}^- -assigned events are in ¹⁴N? A Ξ_{1p}^0 -¹⁴C assignment is more natural.
- Challenge: find one good Ξ_{1s}^- -¹²C capture event.

Thanks for your attention!