The Three-Nucleon Correlation function

A. Kievsky

Istituto Nazionale di Fisica Nucleare, Sezione di Pisa

SPICE: Strange hadrons as a Precision tool for strongly InteraCting systEms ECT*, Trento, 13 - 17 May 2024

Collaboration ALICE-Pisa Nuclear Theory Group

Theory

 A. Kievsky (INFN)
 M. Viviani (INFN-Pisa)
 L.E. Marcucci (Universita' di Pisa and INFN-Pisa)
 S. König (UNC)
 E. Garrido (CSIC-Madrid)
 M. Gattobigio (Université Côte d'Azur and CNRS)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Experiment

- L. Fabbietti (TUM)
- B. Singh (TUM)
- O. Vázquez Doce (INFN-Frascati)
- R. Del Grande (TUM)
- L. Šerkšnytė (TUM)

Dmytro Melnichenko (TUM)

Introduction

- When a high-energy pp or p-nucleus collision occurs, particles are produced and emitted at relative distances of the order of the nuclear force
- The effect of the mutual interaction between hadrons is reflected as a correlation signal in the momentum distributions of the detected particles which can be studied using correlation functions
- The correlation function incorporate information on the emission process as well as on the final state interaction of the emitted pairs or triplets
- By measuring correlated particle pairs or triplets at low relative energies and comparing the yields to theoretical predictions, it is possible to study the hadron dynamics.

The two-particle correlation function

The two-particle correlation function is defined as the ratio of the yield of a particle pair to the product of the single-particle yields.

$$C\left(\vec{p}_{1},\vec{p}_{2}\right)=\frac{\mathcal{P}\left(\vec{p}_{1},\vec{p}_{2}\right)}{\mathcal{P}\left(\vec{p}_{1}\right)\mathcal{P}\left(\vec{p}_{2}\right)}$$

 $\triangleright \mathcal{P}(\vec{p}_1, \vec{p}_2)$ is the probability of finding a pair with momenta \vec{p}_1 and \vec{p}_2

- ▶ $\mathcal{P}(\vec{p}_i)$ is the probability of finding each particle with momentum \vec{p}_i .
- ▶ In absence of correlations, the two-particle probability factorizes, $\mathcal{P}(\vec{p}_1, \vec{p}_2) = \mathcal{P}(\vec{p}_1)\mathcal{P}(\vec{p}_2)$, and the correlation function is equal to unity.

The two-particle correlation function

The correlation between the pair is related to the particle emission and the subsequent interaction of the pair

$$C\left(ec{p}_{1},ec{p}_{2}
ight)=rac{1}{\Gamma}\sum_{m_{1},m_{2}}\int d^{3}r_{1}\,d^{3}r_{2}S_{1}\left(r_{1}
ight)S_{1}\left(r_{2}
ight) imes|\Psi_{m_{1},m_{2}}(ec{p}_{1},ec{p}_{2},ec{r}_{1},ec{r}_{2})|^{2}$$

▶ $S_1(r)$ describes the spatial shape of the source for single-particle emissions. It can be approximated as a Gaussian probability distribution with a width R_M

$$S_1(r) = rac{1}{(2\pi R_M^2)^{rac{3}{2}}} e^{-r^2/2R_M^2}$$

The integration on the CM coordinates leads to the Koonin-Pratt relation for two-particle correlation function

$$C(k) = \frac{1}{\Gamma} \int d^3 r \, S(r) |\psi_k(\vec{r})|^2$$

The pp correlation function: $C(k) = \frac{1}{\Gamma} \int d^3r S(r) |\psi_k(\vec{r})|^2$

k (MeV/c)

The pp Correlation Function

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The pd Correlation Function

We now consider the pd correlation function:

$$A_d C_{pd}(k) = \frac{1}{6} \sum_{m_2, m_1} \int d^3 r_1 d^3 r_2 d^3 r_3 S_1(r_1) S_1(r_2) S_1(r_3) |\Psi_{m_2, m_1}|^2$$

the probability of deuteron formation

$$A_{d} = \frac{1}{3} \sum_{m_{2}} \int d^{3}r_{1} d^{3}r_{2} S_{1}(r_{1}) S_{1}(r_{2}) |\phi_{m_{2}}|^{2}$$

the single particle source function

$$S_1(r) = rac{1}{\left(2\pi R_{
m M}^2
ight)^{rac{3}{2}}}e^{-r^2/2R_{
m M}^2}$$

うせん 前 ふばやふばやふむやる

The pd Correlation Function

the pd correlation function results

$$A_d C_{pd}(k) = \frac{1}{6} \sum_{m_2, m_1} \int \rho^5 d\rho d\Omega \; \frac{e^{-\rho^2/4R_M^2}}{(4\pi R_M^2)^3} |\Psi_{m_2, m_1}|^2$$

$$\Psi_{m_2,m_1} = \sum_{LSJ} \sqrt{4\pi} i^L \sqrt{2L+1} e^{i\sigma_L} (1m_2 \frac{1}{2}m_1 \mid SJ_z) (LOSJ_z \mid JJ_z) \Psi_{LSJJ_z}(\mathbf{x}, \mathbf{y})$$

- ▶ the Jacobi coordinates: $\mathbf{x}_{\ell} = \mathbf{r}_j \mathbf{r}_i$, $\mathbf{y}_{\ell} = \mathbf{r}_{\ell} \frac{\mathbf{r}_i + \mathbf{r}_j}{2}$
- ▶ the hyperspherical coordinates $ho = \sqrt{x_1^2 + (4/3)y_1^2}$, $\Omega \equiv [\alpha_1, \hat{x}_1, \hat{y}_1]$

► The scattering wave function, $\Psi_{LSJJ_z}(\mathbf{x}, \mathbf{y})$ is expanded using the HH basis

The pd wave function

$$\begin{split} \Psi_{LSJJ_{z}} &= \sum_{n,\alpha} \frac{u_{n,\alpha}(\rho)}{\rho^{5/2}} \mathcal{Y}_{n,\alpha}(\Omega) + \frac{1}{\sqrt{3}} \sum_{sym} \left\{ Y_{L}(\hat{y}_{\ell}) \left[\varphi^{d}(i,j)\chi(\ell) \right]_{S} \right\}_{JJ_{z}} \frac{F_{L}(\eta, ky_{\ell})}{ky_{\ell}} \\ &+ \sum_{L'S'} T^{J}_{LS,L'S'} \frac{1}{\sqrt{3}} \sum_{sym} \left\{ Y_{L'}(\hat{y}_{\ell}) \left[\varphi^{d}(i,j)\chi(\ell) \right]_{S'} \right\}_{JJ_{z}} \frac{\overline{G}_{L'}(\eta, ky_{\ell}) + iF_{L'}(\eta, ky_{\ell})}{ky_{\ell}} \end{split}$$

For energies below the deuteron breakup $u_{[K]}(\rho \to \infty) \to 0$ whereas for energies above the deuteron breakup it describes the breakup amplitude. The elastic amplitude is

$$M_{S_{z}S_{z}'}^{SS'}(\theta) = f_{c}(\theta)\delta_{SS'}\delta_{S_{z}S_{z}'} + \frac{\sqrt{4\pi}}{k}\sum_{LL'J}C_{LL'J}T_{LS,L'S'}^{J}Y_{L'M'}(\theta,0)$$

with f_c the Coulomb amplitude. The cross section and analyzing power are $d\sigma/d\Omega(\theta) = tr(MM^{\dagger})/6$ and $A_y(\theta) = tr(M\sigma_y M^{\dagger})/6$

pd elastic observables at $E_p = 65 \text{ MeV}$

— pd AV18, --- nd AV18, \cdots pd AV18+UIX

・ロト・国ト・モート ヨー うへで

The pd Correlation Function: partial-wave contributions

The pd Correlation Function: comparison to experiment

M. Viviani, S. König, A. Kievsky, L.E. Marcucci, B. Singh, O. Vázquez Doce, Phys. Rev. C 108, 064002 (2023) ALICE collaboration, arXiv:2308.16120 [nucl-ex]

The ppp correlation function

$$C_{ppp}(Q) = \int
ho^5 d
ho d\Omega \; S_{
ho_0}(
ho) |\Psi_{ppp}|^2$$

with Q the hyper-momentum, $S_{
ho_0}$ the source function defined as

$$S_{
ho_0}(
ho) = rac{1}{\pi^3
ho_0^6} e^{-(
ho/
ho_0)^2}$$

 $\Psi_{\it ppp}$ is the ppp scattering wave function

$$\Psi_{ppp} = \frac{(2\pi)^3}{(Q\rho)^{5/2}} \sum_{JJ_z, K\gamma} \Psi_{K\gamma}^{JJ_z} \sum_{M_L M_S} (LM_L SM_S | JJ_z) \mathcal{Y}_{KLM_L}^{l_x l_y} (\Omega_Q)^*$$

with the coordinate wave function taken the fomr

$$\Psi_{K\gamma}^{JJ_z} = \sum_{K'\gamma'} u_{K\gamma'}^{K'\gamma'}(Q,\rho) \sum_{M_L M_S} (L'M_L S'M_S | JJ_z) \mathcal{Y}_{K'L'M_L}^{l'_x l'_y}(\Omega_\rho) \chi_{S'M_S}^{s_x}$$

The ppp Wave Function

In a compact form, the ppp wave function is

$$\Psi^{J}_{[\mathcal{K}]}(\vec{x},\vec{y}) = \sum_{[\mathcal{K}']} u^{[\mathcal{K}]}_{[\mathcal{K}']}(\rho) \mathcal{B}^{J}_{[\mathcal{K}']}(\Omega)$$

with $\mathcal{B}_{[\mathcal{K}]}^{J}$ antisymmetric HH-spin functions

The ppp wave is completely determined from the hyperradial functions $u_{[K]}(\rho)$. And they are determined from the boundary conditions as $\rho \to \infty$.

For a given energy, $E = \hbar^2 Q^2/m$, and in the nnn case,

$$u_{[K]}(
ho
ightarrow\infty)
ightarrow\sqrt{Q
ho}\left[J_{K+2}(Q
ho)+ an\delta_{K}Y_{K+2}(Q
ho)
ight]$$

In the ppp case the asymptotic equations are coupled not allowing this simple picture

ppp wave function analysis

Using the property of the HH functions

$$\Psi_{s}^{0} = e^{i\vec{Q}\cdot\vec{\rho}} = \frac{(2\pi)^{3}}{(Q\rho)^{2}} \sum_{[\kappa]} i^{\kappa} J_{\kappa+2}(Q\rho) \mathcal{Y}_{[\kappa]}(\Omega) \mathcal{Y}_{[\kappa]}^{*}(\hat{Q})$$

where $\vec{Q} \cdot \vec{\rho} = \vec{k}_1 \cdot \vec{x} + \vec{k}_2 \cdot \vec{y}$ and J_{K+2} a Bessel function.

For the case of three nucleons we have to include the correct symmetrization.
The nnn case:

$$\Psi_s^0 = \frac{(2\pi)^3}{(Q\rho)^2} \sum_{[K]} i^K J_{K+2}(Q\rho) \mathcal{B}_{[K]}(\Omega) \mathcal{B}_{[K]}^*(\hat{Q})$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

with $\mathcal{B}_{[\mathcal{K}]}(\Omega)$ antisymmetric in the hyperangle-spin space.

For the case of three protons we have to include the correct asymptotics

The ppp wave function analysis

For three protons the asymptotic form it is not known in a close form The Coulomb interaction coupled the asymptotic equations through the term

In a first step we have performed an average of the Coulomb interaction on the hyperangles

$$V_c(
ho) = \int d\Omega \sum_{ij} rac{e^2}{r_{ij}} |\mathcal{Y}_0(\Omega)|^2 = rac{16}{\pi} rac{e^2}{
ho}$$

and the plane wave takes the form

$$e^{i\vec{Q}\cdot\vec{
ho}} o \Psi_{s}^{0} = rac{1}{C_{3/2}(0)} rac{(\pi)^{3}}{(Q
ho)^{5/2}} \sum_{[K]} i^{K} F_{K+3/2}(\eta, Q
ho) \mathcal{B}_{[K]}(\Omega) \mathcal{B}_{[K]}^{*}(\hat{Q})$$

ppp Correlation Analysis

The ppp wave function is

$$\Psi_{ppp} = \sum_{[K]} u_{[K]}(
ho) \mathcal{B}_{[K]}(\Omega) = \Psi^0 + \sum_{J,K}^{\overline{J},\overline{K}} \Psi^J_K$$

To determine Ψ^{J} we use the Adiabatic Hyperspherical Harmonic basis:

$$-\frac{\hbar^2}{m}\frac{\Lambda^2(\Omega)}{\rho^2} = H_{\Omega}\phi_{\nu}(\rho,\Omega) = U_{\nu}(\rho)\phi_{\nu}(\rho,\Omega)$$
$$\Psi_{K}^{J} = \rho^{-5/2}\sum_{\nu} w_{\nu}^{J,K}(\rho)\phi_{\nu}(\rho,\Omega)$$

with the adiabatic functions $\phi_{\nu}(\rho \to \infty, \Omega) \to \mathcal{B}_{[\kappa]}(\Omega)$

and the hyperradial functions $w_{\nu}^{J,K}(\rho) \rightarrow \sqrt{Q\rho} [\delta_{KK'} F_{K+3/2}(Q\rho) + T_{KK'} \mathcal{O}_{K'+3/2}(Q\rho)]$

The ppp correlation function

Comparison to data

A. Kievsky, E. Garrido, M.Viviani, L.E. Marcucci, L. Šerkšnytė, R. Del Grande, Phys. Rev. C109, 034006 (2024)

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Some remarks

- To compare the experimental and the theoretical correlation functions some corrections have been considered
- ▶ For the *pp* case the corrected correlation function is defiend as

$$C(k) = \lambda_{pp}C_{pp}(k) + \lambda_{pp_{\Lambda}}C_{pp_{\Lambda}}(k) + \lambda_{X}C_{X}(k)$$

- primary protons λ_{pp} = 0.67, secondary protons produced mainly in the decay of the Λ, λ_{pp} = 0.203, misidentification contributions λ_x = 0.127
- For the ppp case the corrected correlation function is defiend as

$$C(Q_3) = \lambda_{ppp} C_{ppp}(Q_3) + \lambda_{ppp_{\Lambda}} C_{ppp_{\Lambda}}(Q_3) + \lambda_{\mathrm{X}} C_{\mathrm{X}}(Q_3)$$

primary protons λ_{ppp} = 0.618, secondary protons produced mainly in the decay of the Λ, λ_{pppΛ} = 0.196, misidentification contributions λ_x = 0.186

The pp correlation function

$$C_{12}(k) = C_s^0 + C_{00} = \int d\mathbf{r} S_{12}(r) \left[|\Psi_s^0|_{\Omega}^2 - \frac{1}{2} \left(\frac{F_0(\eta, kr)}{kr} \right)^2 + \frac{1}{2} \left(\frac{u_0(kr)}{kr} \right)^2 \right]$$
$$C_{pp}(k) = \lambda_{pp} C_{12}(k) + \lambda_{pp_{\Lambda}} C_{pp_{\Lambda}}(k) + \lambda_{X} C_{X}(k)$$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

The $p\Lambda$ and $pp\Lambda$ correlation functions

• The $p\Lambda$ correlation function is defined as

$$C(k) = \int d^3 r \, S(r) |\psi_{p\Lambda}\left(ec{r}
ight)|^2$$

- ψ_p is the scattering pΛ wave function. It is governed by the pΛ interaction which is not very well kown
- ► The few pA scattering data can be described in the context of the EFT at different orders
- > At different cutoffs different sets of low-energy scattering parameters appear

	NLO13						NLO19				SMS N2LO		
C(MeV)	450	500	550	600	650	700	500	550	600	650	500	550	600
<i>a</i> ₀ (fm)	-2.90	-2.91	-2.91	-2.91	-2.90	-2.90	-2.91	-2.90	-2.91	-2.90	-2.80	-2.79	-2.80
r_e^0 (fm)	2.64	2.86	2.84	2.78	2.65	2.56	3.10	2.93	2.78	2.65	2.82	2.89	2.68
<i>a</i> 1 (fm)	-1.70	-1.61	-1.52	-1.54	-1.51	-1.48	-1.52	-1.46	-1.41	-1.40	-1.56	-1.58	-1.56
r_e^1 (fm)	3.44	3.05	2.83	2.72	2.64	2.62	2.62	2.61	2.53	2.59	3.16	3.09	3.17

The $N\Lambda$ and $NN\Lambda$ interaction

Using EFT concepts we define a low energy (two-parameter) NA interaction

$$V_{N\Lambda}(r) = \sum_{\mathcal{S}=0,1} V_{\mathcal{S}} e^{-(r/r_{\mathcal{S}})^2} \mathcal{P}_{\mathcal{S}}$$

 \mathcal{P}_S is a spin projector and V_S and r_S fixed to describe a_S and r_e^S .

We define a two-parameter $NN\Lambda$ interaction as

$$W_{NN\Lambda}(r_{13}, r_{23}) = W_3 e^{-(r_{13}^2 + r_{23}^2)/r_3^2}$$

with W_3 fixed to give the hypertriton binding energy $E_3 = 2.390 \text{ MeV}$

	NLO13					NLO19				SMS N2LO		
C(MeV)	500	550	600	650	700	500	550	600	650	500	550	600
V_0 (MeV)	-30.180	-30.574	-31.851	-34.831	-37.198	-25.954	-28.817	-31.851	-34.831	-31.140	-29.753	-34.273
r ₀ (fm)	1.467	1.459	1.434	1.380	1.342	1.563	1.495	1.434	1.380	1.439	1.466	1.382
V_1 (MeV)	-29.205	-33.839	-36.258	-38.455	-39.143	-38.984	-39.470	-42.055	-49.373	-27.544	-28.609	-27.392
r ₁ (fm)	1.338	1.247	1.216	1.183	1.170	1.178	1.163	1.126	1.143	1.361	1.344	1.364
E ₃ (MeV)	2.873	2.879	2.925	2.985	3.027	2.792	2.839	2.904	3.255	2.819	2.799	2.878
W ₃ (MeV)	11.83	11.83	12.32	12.873	13.224	10.545	11.056	11.795	16.8	10.65	10.375	11.4
<i>r</i> ₃ (fm)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	_ 2.0 _	2.0
												- Jaco

The $p\Lambda$ correlation function

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

The $pp\Lambda$ correlation function (preliminary)

The $pp\Lambda$ correlation function (preliminary)

► A NNA three-body force is included fixed to describe the $B(^3_{\Lambda}H)$

・ロト・西・・山下・ 山下・ 山下・

Summary

- Although its apparent simplicity, the three-nucleon problem is of great complexity
- Measurements of the correlation function allow for new tests of the NN and NNN interactions
- In the ppp case the Coulomb interaction couples the asymptotic dynamics increasing the difficulties of the numerical treatment
- ► The corrections of the computed *pp* and *ppp* correlation functions needs the kwonledge of the *p*Λ and *pp*Λ correlation functions
- However the $p\Lambda$ interaction is not well known
- Studies on the $p\Lambda$ and $pp\Lambda$ correlation functions have been started
- The ppA correlation functions could be sensitive to the NNA three-body force, an important ingredient in the studies of compact systems

Screened Coulomb potential

To study the effect of screening on the Coulomb potential, we introduce the following short-range potential

$$V_{sc}(r) = \frac{e^2}{r} e^{-(r/r_{sc})^n}$$

where r_{sc} is the screening radius and the parameter n = 4 allows for a sufficient fast cut of the Coulomb potential. With the above potential the radial functions $u_{\ell}(kr)$ have the following asymptotic form:

$$u_{\ell}(kr \to \infty) \longrightarrow kr[j_{\ell}(kr) + T_{\ell\ell}\mathcal{O}(kr)]$$

with $O(kr) = \eta_{\ell}(kr) + ij_{\ell}(kr)$. The correlation function using the screened Coulomb potential results

$$C_{pp}^{sc}(k) = \frac{1}{4\sqrt{\pi}R^3} \frac{1}{k^2} \int dr e^{-(r^2/4R^2)} \left(\sum_{\ell \equiv \text{even}} u_\ell^2(kr)(2\ell+1) + 3\sum_{\ell \equiv \text{odd}} u_\ell^2(kr)(2\ell+1) \right).$$

The pp Screened Correlation function

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● � � �

The pp Screened Correlation function

◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● の Q () ●

The ppp Screened Correlation function

ミト ▲ ヨト ヨ つくぐ

The ppp Screened Correlation function

ミト ▲ 三 ト 三 - - のへ(や