Probing the structure of light hypernuclei at the LHC

Francesco Mazzaschi SPICE Workshop, 14/05/24

Hypernuclei

- Hypernuclei: bound states of strange baryons (hyperons) and ordinary nuclei
 - Extend the nuclear chart to a third dimension, the strangeness one
 - Poorly known bound states
 - Unique probes for studying the interaction of hyperons with the ordinary matter

Hypertriton structure: B_{Λ}

ALICE

- Λ separation energy $B_{\Lambda} = m(d) + m(\Lambda) m({}^{3}_{\Lambda}H)$
 - Reflects the extension of the ${}^{3}_{\Lambda}$ H wave function
- Emulsion experiments¹: ${}^{3}_{\Lambda}$ H is a loosely bound nucleus • $B_{\Lambda} = 130 \pm 50 \text{ keV}$

From the observation of 82 examples of ${}^{3}_{\Lambda}$ H, the binding energy of this hypernucleus is found to be 0.15 ± 0.08 MeV. An accurate determination of the binding energy of the ${}^{3}_{\Lambda}$ H hypernucleus is of great importance to estimate the strength of the Λ N interaction in the singlet state. Combining the result obtained in this experiment with the data compiled by Bohm et al. [2], reanalysed using the methods and selection criteria defined in the present work, the best estimate for the binding energy of ${}^{3}_{\Lambda}$ H is found to be $B_{\Lambda} = 0.13 \pm 0.05$ MeV.

Hypernucleus	Decay mode	No of events	$B_{\Lambda} \pm \Delta B_{\Lambda}$ (MeV)
³ _Λ H	$\pi^{-} + {}^{1}H + {}^{2}H$	24	0.23 ± 0.11
	π^- + ³ He	58	0.06 ± 0.11
	total	82	0.15 ± 0.08

Recent pionless Effective Field Theory (EFT) calculations ² show large separation (~11 fm) between the Λ and the "deuteron core" for B_{Λ} = 130 keV

F. Hildenbrand et al., Phys. Rev., 100 (2019)

¹ 📕 M.Juric et al., Nucl. Phys. B, 52, 1-30, (1973)

Hypertriton structure: lifetime and B[^]

• More than 50 years after the first measurement, B_{Λ} was poorly known

Implications of an increased Λ -separation energy of the hypertriton

Hoai Le ^a, Johann Haidenbauer ^a 🙁 🖾 , <u>Ulf-G. Meißner ^b a ^c, Andreas Nogga</u> ^a

Consequences of increased hypertriton binding for s-shell A-hypernuclear systems

M. Schäfer^{®*} Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel and Nuclear Physics Institute of the Czech Academy of Sciences, 25068 Řež, Czech Republic

B. Bazak ^O,[†] N. Barnea ^O,[‡] and A. Gal[§] Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

J. Mareš⊙[↓] Nuclear Physics Institute of the Czech Academy of Sciences, 25068 Řež, Czech Republic

- Lifetime:
 - > A low B_{Λ} should imply a lifetime close to the free Λ hyperon one (262 ps)
 - more measurements, but all with uncertainties larger than 10%

Schäfer et al., Phys. Rev. C 105 (2022) 015202 Le et al., Phys.Lett.B 801 (2020) 135189

Thermal Models (SHMs)

Hadrons emitted from the interaction region in statistical equilibrium when the system reaches a limiting temperature T_{eq}

• Abundance of a species

 \circ \propto Exp(-m/T_{eq})

Coalescence

Baryons close in phase space can form a nucleus

• Interplay between the configuration of the phase space of the nucleons and the wave function of the nucleus

³ H measurements at the LHC

The ALICE Run 2 detector

..........

Time-Of-Flight detector

 Identification of nuclei and hadrons through their time-of-flight

Time Projection Chamber

- Tracking
- Identification of nuclei and hadrons via specific energy loss

Inner Tracking System

• Track reconstruction

- Reconstruction of primary and decay vertices
- identification of low-momentum particles

LHC Run 3: ITS and TPC upgrades

V0 detectors

- Trigger
- Centrality/multiplicity determination

${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$ reconstruction

• Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV collected by ALICE during 2018

 ^{3}He and $\pi^{\text{-}}$ identified through their specific energy loss in the TPC

Secondary vertex reconstruction: loose pre-selections applied to the decay topology

³ H selection with machine learning

- ³ H candidates selected with Boosted Decision Trees
- Signal extracted analysing the invariant mass spectrum

ALICE

Properties of ³ H uncovered

- ³ H lifetime compatible within 1σ with free Λ lifetime
- Low B_{Λ} , in agreement with early emulsion experiments

Final results

- Most precise measurements to date of T and B_{Λ} of the ${}^{3}_{\Lambda}H$
 - > $T = 253 \pm 11 \text{ (stat.)} \pm 6 \text{ (syst.) ps}$ > $B_{\Lambda} = 102 \pm 63 \text{ (stat.)} \pm 67 \text{ (syst.) keV}$

- Weakly-bound nature of the ³_AH finally confirmed
 - > ${}^{3}_{\Lambda}$ H could be approximated as a shallow d- Λ state with a wide d- Λ radius of ~ 10 fm
- How does this reflect on its production?

³ H synthesis at the LHC

- Weakly bound state
 - > ${}^{3}_{\Lambda}$ H / Λ → large separation between SHM ¹ and coalescence ² predictions at low charged-particle multiplicity density → coalescence is sensitive to the interplay between the size of the collision system and the spatial extension of the nucleus wave function
- ³ A production in pp and p–Pb collisons: a key to understand the nuclear production mechanism at the LHC

Production yields

- First measurement of ${}^3_{\Lambda}$ H/ Λ in pp and p–Pb collisions
 - good agreement with 2-body coalescence
 - tension with SHM at low charged-particle multiplicity density
 - $V_c = 3 \, dV/dy$ excluded: deviation > 6σ
 - First significant constraint to SHM possible configurations
- Coalescence quantitatively describes the ${}^3_{\Lambda}$ H suppression in small systems
 - the nuclear size matters at low charged-particle multiplicity (and we will measure it!)

First hypertritons seen by LHCb!

14

- LHCb observed the (anti-)hypertriton on Run 2 pp data: link
 - > ~ 100 anti- $^{3}_{\Lambda}$ H analysing 5.5 fb⁻¹
 - Innovative method for tagging ³He nuclei
 - > Allows for complementary measurements with ALICE in the forward region

A=4 Hypernuclei at the LHC

${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He in Pb–Pb collisions

- ⁴ And ⁴ He are expected to be compact states
 SHM should give a good estimation of the yield
- And the SHM correctly describes the yield only when including the higher spin states

ALICE

⁴ A and ⁴ He in Pb–Pb collisions

- Significant deviation from SHM with ground state only
 - > Nuclear properties inferred again from the production mechanism

ALICE

Hypernuclei in the Run 3 era

ALICE in Run 3: going to A > 3

ALICE

19

- LHC Run 3: continuous readout + ITS and TPC upgrades
 - > $O(10^3)$ and $O(10^2)$ larger with respect to minimum bias pp and Pb–Pb samples
 - > Dedicated trigger on ³He and ⁴He
 - > Precision measurements of ${}^{3}_{\Lambda}$ H in small colliding systems
- Extend ALICE hypernuclear program to A > 3 hypernuclei in all collision systems

The upgraded Inner Tracking System

- ITS2: 7 layers based on Monolithic Active Pixel Sensors (MAPS)
- 24120 chips, 12.5 Gpixel
 Largest MAPS-based detector in High-Energy Physics
- 3 Inner Barrel layers (IB)
 - radii from 2.2 to 3.8 cm
- 4 Outer Barrel layers (OB)
 - radii from 19 to 39 cm

Reduced material budget and higher spatial resolution: (r ϕ , z) = 5x5 μ m²

20

Back to the origin

- Hypernuclei are directly tracked with the ITS2 !
 - \circ Possibility to reconstruct the full decay chain \rightarrow silicon MHz bubble chamber

Bonetti et al., Il Nuovo Cimento 11.2, (1954)

The strangeness tracking algorithm

ALICE

- 1. Matches the ${}^{3}_{\Lambda}$ H ITS track with the decay daughter tracks
- 2. Final kinematic fit of the decay topology (WIP)

Before strangeness tracking

The strangeness tracking algorithm

ALICE

23

- 1. Matches the ${}^{3}_{\Lambda}$ H ITS track with the decay daughter tracks
- 2. Final kinematic fit of the decay topology (WIP)

After strangeness tracking

Outstanding background suppression!

Conclusions

- ${}^{3}_{\Lambda}$ H in large systems:
 - \blacktriangleright Precise measurements of lifetime and B_A in Pb–Pb collisions
 - Weakly bound nature of ³ H confirmed
- First measurement of the ${}^{3}_{\Lambda}$ H production in p–Pb collisions:
 - > ${}^{3}_{\Lambda}H / \Lambda$ favours coalescence expectation
 - Nuclear size matters at low-charged particle multiplicity
- Run 3:
 - > Large sample + strangeness tracking \rightarrow new era for light-hypernuclei with A < 5

Probing the core of the neutron stars

- Neutron stars (NSs) equation of state (EoS)
 - Production of hyperons favourable inside the innermost core of the NS¹
 - Softening of the EoS, incompatible with measured heavy NS
 - "Hyperon puzzle"

Probing the core of the neutron stars

- Neutron stars (NSs) equation of state (EoS)
 - \circ Introduction of $\Lambda\text{-N-N}$ repulsion might solve the hyperon puzzle
 - Models need additional experimental constraints!
- ${}^3_{\Lambda}$ H : most direct probe on earth to study the Λ -N and Λ -N-N forces
 - Binding energy of the ${}^{3}_{\Lambda}H$ employed to model the ΛN interaction potential

The R3 dependency

29

Figure 3. Lifetime of the hypertriton τ relative to the free Λ lifetime τ_{Λ} . The grey band represents the result obtained in Ref. [16]. In addition, we show the results using a fixed branching ratio R_3 to calculate the total width with and without pionic final state interactions, similar to the approach in Ref. [15], which is given in yellow for reference. The green areas give the world average for the hypertriton lifetime as well as the Λ separation energy according to Ref. [10]. In order to keep the plot readable we show EFT uncertainty bands only for the results of Ref. [16].

(Hyper)nuclei at the LHC

- (Hyper)nuclei at the LHC observed in all the collision systems
 - o pp, p–Pb, Pb–Pb
 - Pb–Pb: complex dynamics and Quark Gluon Plasma (QGP) formation
- Nuclei and hypernuclei produced in the latest stages of the collision evolution
 Chemical and kinetic freeze outs
- B_∧ ≅100 keV , T_{cb} ≅ 100 MeV
 - which is the formation mechanism of these objects at the LHC energies ?

The Statistical Hadronisation Model (SHM)

- Hadrons emitted from the interaction region in statistical equilibrium when the system reaches the chemical freeze-out temperature
- Abundance of a species
 - o ∝ Exp(-m/T_{chem})
- Mainly used for Pb–Pb, it can be used in smaller systems (pp and p–Pb) by using the canonical ensemble

31

Sun et al., Phys. Lett. B 792, (2019) 132 Horst et al. , <u>arXiv:2302.12696</u>

F. Mazzaschi

32

Coalescence Models

- Original idea:
 Nucleons close
 - Nucleons close in phase space at the freeze-out can form a nucleus via coalescence
- Today: Wigner function formalism^{1, 2}
 - Overlap between nucleus wave-function and nucleon phase-space distribution
 - Dynamic description, but yield predictions only relative to the nucleon ones

Coalescence vs SHM

- Production vs charged particle multiplicity
 - Dependence on the system size
- d/p ratio successfully described by both SHM and Coalescence from pp to Pb–Pb collisions

How can we improve our understanding?

Significance

- Significance estimated with local p-value
 - Probability for a background fluctuation to be at least as large as the observed maximum excess
 - Asymptotic formulae for likelihood-based tests ¹
 - Significance of 4.4σ

NA60+

• Performance study for the NA60+ experiment: ${}^{5}_{\Lambda}$ He

Chiral EFT

Λ _{UV} (MeV)	B_{Λ} (keV)	$\Gamma_{\Lambda^{3}H\rightarrow^{3}He+\pi^{-}}$ (GHz)	$\tau(^3_{\Lambda}H)$ (ps)
800	69	0.975	234 ± 27
900	135	1.197	190 ± 22
1000	159	1.265	180 ± 21
	410	1.403	163 ± 18

Strong B_{Λ} dependence

Pérez-Obiol A., *Physics Letters B*, vol. 811 (2020)

Pionless EFT

Mild B_{Λ} dependence

Hildenbrand F. et al., *Physical Review C*, vol. 102, no. 6 (2020)

Final results

- Most precise measurements to date of τ and B_{Λ} of the ${}^{3}_{\Lambda}H$ > $\tau = 253 \pm 11$ (stat.) ± 6 (syst.) ps
 - > $B_{\Lambda} = 102 \pm 63$ (stat.) ± 67 (syst.) keV

Compatible with all the theoretical predictions assuming ³_AH as weakly bound

Boosted Decision Trees

- Simple (apparently) supervised learning model well suited for classification and regression problems
- Building block \rightarrow Decision Tree (DT)
 - A sequence of simple tests on the variables of the hypertriton candidate
 - Combining all the tests one gets an output as a function of the variables of the single candidate
- Training a DT:
 - each test is built to maximise the separation between the signal and the background classes

DT applied to the Titanic dataset:

was the passenger survived?

38

Boosted Decision Trees

ALICE

39

• DT: poor performances on independent samples \rightarrow overfitting

Boosting

- Many simple (shallow) trees built sequentially
- Each tree is built to compensate the errors of the previous one

Ensemble model

- predictions are made combining the output of all the trees
- Very resilient to overfitting

Do they like computer games? Score based approach to evaluate it

³ H signal in pp and p–Pb collisions

- Data samples:
 - > pp collisions at √s = 13 TeV and p-Pb collisions at √s_{NN} = 5.02 TeV collected during Run 2
 - ³ A selection in pp: trigger on high multiplicity events using V0 detectors
 + topological selections on triggered events
- ³ A selection in p–Pb: 40% most central collisions + BDT Classifier
- Significance > 4σ both in pp and p–Pb

Phys. Rev. Lett. 128, (2022) 252003

