

Structure of light and medium-heavy Λ hypernuclei with antisymmetrized molecular dynamics

Masahiro Isaka, Hosei University

Grand challenges of hypernuclear physics

Interaction: To understand baryon-baryon interaction

- 2 body interaction between baryons (Y: hyperon, N: nucleon): YN, YY interactions
 - → Studied through hypernuclei due to difficulty of YN scattering exp.
- Many-body interaction
 - → Important issue in recent studies

Structure: To understand many-body system of nucleons and hyperon

Many-body force and "Hyperon puzzle" in neutron star

Hyperon puzzle

Softening of EOS by hyperon mixing

How do we resolve?

Baryon many(three)-body force

If strong repulsion exists acting in hyperonic channels, EOS of neutron star matter becomes stiff

Important issue in hypernuclear physics: to reveal effects of hyperonic many-body force in Λ hypernuclei

Grand challenges of hypernuclear physics

Interaction: To understand baryon-baryon interaction

- 2 body interaction between baryons (Y: hyperon, N: nucleon): YN, YY interactions
 - → Studied through hypernuclei due to difficulty of YN scattering exp.
- Many-body interaction
 - → Important issue in recent studies

Structure: To understand many-body system of nucleons and hyperon

- •Addition of hyperon(s) shows new aspects of nuclear structure
 - e.g.) structure change by hyperon(s)
 - No Pauli exclusion between N and Y
 - YN interaction is different from nuclear force

Hyperon as an impurity in hypernuclei

Structure of Λ hypernuclei

Λ hypernuclei observed so far

- ullet Concentrated in light Λ hypernuclei
- Most have well-developed cluster structure

Cluster structure in light hypernuclei

Famous example of "impurity effects"

• Λ reduces inter-cluster distance b/w α + d of the core nucleus ⁶Li • Confirmed through B(E2) reduction

Toward heavier and exotic Λ hypernuclei

◆Experiments at J-PARC, JLab, ... *etc*.

Heavier(sd-shell and more) hypernuclei can be produced

What will happen if a Λ is coupled to nuclei with various structures ?

What will happen if a Λ particle is coupled to nuclei ?

• Dynamical changes of nuclear structure

- Changes of cluster structure
- Deformation changes

\bullet Sensitivity of the Λ binding energy B_{Λ} on nuclear structure

- Dependence of B_{Λ} on nuclear deformation
- Mass number A dependence & many-body force effects

ullet Coupling of Λ particle in p orbit to clustering/deformed core nuclei

- Genuine hypernuclear states
- \bullet Possibility to probe nuclear deformation using Λ particle

Many authors predict that Λ in s-orbit reduces nuclear deformation

Antisymmetrized molecular

Skyrme-Hartree-Fock (SHF)

Relativistic mean-field (RMF)

RMF & SHF

³₄C (+11.0 MeV)

-0.2 -0.1 0 0.1 0.2 0.3 0.4

 $\beta = \sqrt{5\pi/3} O / 7B^2$

Deformations/level structure with beyond-mean-field

J.W. Cui, X.R. Zhou, H.J. Schulze, PRC**91**,054306('15)

H. Mei, K. Hagino, J.M. Yao, T. Motoba, PRC**91**, 064305(2015); **97**, 064318(2018)

... and so on

H. J. Schulze, et al., PTP**123**, 569('10)

Structure calculation of hypernuclei

Antisymmetrized Molecular Dynamics for hypernuclei (HyperAMD)

<u>Hamiltonian</u> $\hat{H} = \hat{T}_N + \hat{V}_{NN} +$

$$\hat{T}_{\Lambda} + \hat{V}_{\Lambda N} - \hat{T}_{g}$$
 NN : Gogny D1S Λ N : YNG interaction

Wave function

- Nucleon part: Slater determinant
 Spatial part of s.-p. w.f. is described
 as Gaussian packets
- \bullet Single-particle w.f. of Λ hyperon: Superposition of Gaussian packets

• Total w.f.:
$$\psi(\vec{r}) = \sum_{m} c_m \varphi_m(r_\Lambda) \otimes \frac{1}{\sqrt{A!}} \det[\varphi_i(\vec{r}_j)]$$

M.I., et al., PRC83(2011) 044323, M. I., et al., PRC83(2011) 054304

$$\varphi_{N}(\vec{r}) = \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})] \qquad \varphi_{\Lambda}(r) = \sum_{m} c_{m} \varphi_{m}(r) \varphi_{i}(r) \propto \exp\left[-\sum_{\sigma=x,y,z} v_{\sigma}(r-Z_{i})^{2}_{\sigma}\right] \chi_{i} \eta_{i} \qquad \varphi_{m}(r) \propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_{\sigma}(r-z_{m})^{2}_{\sigma}\right] \chi_{m} \chi_{i} = \alpha_{i} \chi_{\uparrow} + \beta_{i} \chi_{\downarrow} \qquad \chi_{m} = a_{m} \chi_{\uparrow} + b_{m} \chi_{\downarrow}$$
Initial w.f.
Initial w.f.
Spherical formed cluster

How to analyze from energy surface

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation at each β (and γ) \rightarrow energy curve as a function of β
- Energy minimum at (β,γ)

How to analyze from energy surface

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation at each β (and γ) \rightarrow energy curve as a function of β
- Energy minimum at (β,γ)

How to analyze from energy surface

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation at each β (and γ) \rightarrow energy curve as a function of β
- Energy minimum at (β,γ)

Deformation change by Λ in *s*-orbit

How to analyze from energy surface

M.I, et al., PRC83, 044323(2011)

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation of hypernucleus
 - \rightarrow energy minimum moves to smaller β with Λ in *s*-orbit

Λ in *p*-orbit <u>enhances</u> nuclear deformation

Triaxially deformed

Antisymmetrized molecular dynamics (AMD)

-86

E [MeV]

-100 <u>–</u> 0.0

relativistic mean-field Hartree-Fock (DSHF) W. X. Xue, et al., PRC**91**, 024327(2015) M.I, et al., PRC83, 044323(2011) Bi-Cheng Fang et al., EPJA**56**,11(2020) ⁵¹₂V (+20.8 MeV) ⁵¹V (+14.6 MeV) ^{C⊗A}1(+11.51MeV -431 ⁵¹_{Ad}V (+ 6.6 MeV) A2(+1.65MeV -78adding Λ in *p* orbit E (MeV) +2.2 MeV (β=0) -432 $^{13}_{\Lambda}\mathrm{C}$ -80 E (MeV) -433 +0.8 MeV -820.2 0.4 ß -434 -0.4 -0.2 0.0 0.2 0.4 –0.1 Me

0.2

0.4

Deformed Skyrme-

 β_2

Deformation change of Λ in higher orbits such as *d*-orbit is also predicted by several papers: W. X. Xue, et al., PRC91, 024327(2015), X. Y. Wu, et al., PRC95, 034309(2017)

0.0

-435

-0.2

Why does Λ change nuclear deformation?

- Λ in *s* orbit is deeply bound at small β , while Λ in *p* orbit prefers deformation
- Competition b/w Λ binding energy and energy surface of core nucleus

"binding energy of Λ " vs. "energy surface of the core nuclei"

Energy surface of core nuclei

Shape of energy surface is related to nuclear structure

"Overlap between A and N" is the key!

 Λ in *s*-orbit (*p*-orbit) is deeply bound with smaller β (larger β) due to larger overlap between Λ and nucleons

Λ in <i>s</i> orbit	\bigcirc	\bigcirc
	Small β	Large β
Overlap b/w Λ & N	Large	Small
$\Lambda \mathrm{N}$ attraction	Large	Small
Λ in p orbit		
	Small β	Large β
Overlap b/w Λ & N	Small	Large
$\Lambda \mathrm{N}$ attraction	Small	Large

Structure dependence of "impurity effects" Example: ²¹ Ne (prediction by AMD calc) M. Isaka, et al., PRC83, 054304(2011) • Shrinkage/deformation change are larger in α + ¹⁶O + Λ cluster states, which appears as difference in intra-band B(E2) reduction **Ground band** $K^{\pi} = 0^{-} (\alpha + {}^{16}O)$ band cf. $^{7}_{\Lambda}$ Li 2 fm 2 fm ⁶Li ²⁰Ne $^{21}_{\Lambda}\text{Ne} \quad 0^+_1 \otimes \Lambda^-$ ²⁰Ne $^{21}_{\Lambda}\text{Ne}$ $1_1 \otimes \Lambda^{-1}$ 0^{+} ²¹[^]Ne ²⁰Ne ²¹^{Ne} α ²⁰Ne $r_{RMS}(fm) \ 0^+ \otimes \Lambda s^{\Lambda} r_{RMS}(fm) \Delta r_{RMS}(fm)$ r_{RMS}(fm) K^π=0⁺ $0 \otimes \Lambda s r_{RMS}(fm) \Delta r_{RMS}(fm)$ $K^{\pi}=0^{-}$ shrinkage (1/2)-3.15 0+ 2.97 (1/2)+2.92 -0.05 -0.113.27 1-(3/2)-3.15 -0.11(3/2)+2.91 -0.052.96 2+ (5/2)-3.13 -0.117 Li (5/2)+2.91 -0.053.24 3-(7/2)-3.14 -0.10(7/2)+2.87 -0.06 (9/2)--0.123.11 2.93 4+ 3.23 5-(9/2)+2.88 -0.04(11/2)-3.11 -0.13(13/2)-(11/2)+3.06 -0.172.81 -0.05 3.23 7-2.87 6+ (15/2)-3.05 -0.18 (13/2)+2.83 -0.04

What will happen if a Λ particle is coupled to nuclei ?

• Dynamical changes of nuclear structure

- Changes of cluster structure
- Deformation changes

\bullet Sensitivity of the Λ binding energy ${\sf B}_\Lambda$ on nuclear structure

- Dependence of B_{Λ} on nuclear deformation
- Mass number A dependence & many-body force effects

ullet Coupling of Λ particle in p orbit to clustering/deformed core nuclei

- Genuine hypernuclear states
- \bullet Possibility to probe nuclear deformation using Λ particle

Dependence of B_{Λ} on nuclear deformation

Example:

¹¹ABe

\mathbf{B}_{Λ} is smaller in largely deformed state than less deformed state

- Different deformations coexist near the ground state
 - Λ in s orbit reduces it, but the difference remains
 - B_{Λ} is different due to overlap \rightarrow If different deformation coexist,

Dependence of B_{Λ} on nuclear structure

 $^{21}_{\Lambda}Ne$

B_{Λ} is smaller in cluster states than mean-field like states **Example:**

- Different structures coexist near the ground state
 - Λ in s orbit changes them, but the difference remains
- Λ is localized around ¹⁶O in α + ¹⁶O + Λ state \rightarrow difference of B_A

Dependence of B_{Λ} on nuclear structure

Which cluster does a Λ particle prefer in α + ¹⁶O + Λ state?

A-dependence of B_{Λ} and many-body force effects

By describing structure of hypernuclei properly using appropriate ΛN interaction, many-body force (YNN) effects can be seen in A dep. of B_{Λ}

Short summary on many-body force effects

Energy difference between B_{Λ}^{cal} and B_{Λ}^{exp} is a room for many-body force

 $B^{}_{\Lambda}$ values are different in ESC14 and ESC12 corresponding to odd force

In ESC14

- With weakly repulsive odd-state force
- Many body repulsion (MPP) determined
 by ¹⁶O+ ¹⁶O scattering is allowed,
 which explains massive NS

In ESC12

- With strongly repulsive odd-state force
- Weakened many-body force is allowed

Determining odd-state force will impose strong constraints on many-body force

What will happen if a Λ particle is coupled to nuclei ?

• Dynamical changes of nuclear structure

- Changes of cluster structure
- Deformation changes

\bullet Sensitivity of the Λ binding energy B_{Λ} on nuclear structure

- Dependence of B_{Λ} on nuclear deformation
- Mass number A dependence & many-body force effects

ullet Coupling of Λ particle in p orbit to clustering/deformed core nuclei

- Genuine hypernuclear states
- \bullet Possibility to probe nuclear deformation using Λ particle

Genuine hypernuclear states in ⁹, Be

⁹_{Λ}Be: axially symmetric 2 α clustering

Two rotational bands as *p*-states

- Anisotropic *p* orbit of Λ hyperon
 Axial symmetry of 2α clustering

 \rightarrow p-orbit parallel to/perpendicular to the 2 α clustering

p states in ${}^{9}_{\Lambda}$ Be ⁹Be

"9Be analog states"

Forbidden for n in ⁹Be due to Pauli principle

"genuine hypernuclear states"

Genuine hypernuclear states in ⁹, Be ⁹_{Λ}Be: axially symmetric 2 α clustering Anisotropic *p* orbit of Λ hyperon Two rotational bands as *p*-states Axial symmetry of 2α clustering \rightarrow p-orbit parallel to/perpendicular to the 2 α clustering Excitation energy [MeV] ${}^9_{\Lambda}B\epsilon$ Ex (MeV) 0.16 Be 202°≤θ<14° 0.14 perpendicular $\sigma_{2^{\circ}-14^{\circ}}$ [µb/0.25MeV] 90'0 1'0 1'0 1'0 parallel 15 \$ 10 #2 3-0.04 0.02 2^{+} R.H. Dalitz, A. Gal, PRL 36 (1976) 362. 190 200 170 185 205 175 180 195 160165 H. Bando, et al., PTP 66 (1981) 2118. MHYP - MA [MeV] O. Hashimoto et al., NPA **639** (1998) 93c. T. Motoba, et al., PTPS**81**, 42(1985).

Split of *p*-state in ${}^{9}_{\Lambda}$ Be

 ${}^{9}{}_{\Lambda}$ Be: axially symmetric 2α clustering

p-states splits into 2 bands depending on the direction of p-orbits

Coupling of Λ in p orbit to triaxially deformed nuclei

²⁶Mg: candidate of triaxially deformed nuclei, but identification is not easy

- Shell gap in Nilsson diagram: Z=12 (prolate) vs. N=14 (oblate) → triaxial
- β,γ -softness is discussed by several authors

Triaxial deformation

If nucleus is triaxially deformed, *p*-states can split into 3 different states

Triaxial deformation

Prolate deformation

Candidate: Mg hypernuclei

Observing the 3 different *p***-states is strong evidence of triaxial deformation**

Results: ${}^{27}_{\Lambda}Mg$

• 3 bands are obtained by Λ in *p*-orbit \rightarrow Splitting of the *p* states

Results: ${}^{27}_{\Lambda}Mg$

- Sophisticated structure calculation is ongoing
- We are now trying to predict production cross section of $^{27}Al(\gamma, K^+)^{27}{}_{\Lambda}Mg$

Summary

In Λ hypernuclei, by the coupling of Λ , we can expect following phenomena:

Dynamical changes of nuclear structure

- Changes of cluster structure
- Deformation changes

Sensitivity of \mathbf{B}_{Λ} on nuclear structure

- B_{Λ} depending on nuclear deformation
- Both hyperonic interactions and structure of hypernuclei are important in A-dep. of B_{Λ}

 \rightarrow Many-body effects in Λ hypernuclei

Coupling of Λ particle to clustering/deformed core nuclei

- Unique feature of Λ in p orbit such as genuine hypernuclear states
- Possibility to probe nuclear triaxial deformation using Λ in $^{\rm 27}{}_{\Lambda}{\rm Mg}$

Backup

Many-body force effects
From studies of light Λ hypernuclei

- \bullet Λ hypernuclei observed so far: concentrated in light Λ hypernuclei with A \lesssim 10
 - Few-body calculation techniques
 - \bullet G-matrix calculation for ΛN interactions
 - Increases of experimental information

E. Hiyama, NPA **805** (2008), 190c.

- Y. Yamamoto, *et al.*, PTP Suppl. **117** (1994),361.
- O. Hashimoto and H. Tamura, PPNP 57 (2006), 564.

- Knowledge of ΛN interaction and development of interaction models

Developments of effective interactions

In this study,

- G-matrix interaction derived from Nijmegen potential (YNG)
- Nijmegen potential: a meson exchange model
- G-matrix calculation takes into account medium effects

YNG interaction depends on Fermi momentum $k_{\rm F}$ through nuclear density coming from $\Lambda N\mathcal{N}-\Sigma N$ coupling effects

k_F can be calculated from density e.g. Averaged Density Approximation (ADA) $\langle \rho \rangle = \int dr^3 \rho_N(\mathbf{r}) \rho_\Lambda(\mathbf{r}) \quad k_F = \left(\frac{3\pi^2 \langle \rho \rangle}{2}\right)^{1/3}$ ΛN 2-body G-matrix effective interaction

G-matrix interaction from Nijmegen potential (YNG)

- k_F (density) dependence from ΛN - ΣN coupling
- Ambiguity remains in spin-independent odd-state force

Strongly repulsive: **ESC12**, NSC97 Weakly repulsive: ESC08a, **ESC14**

	U_Λ	$U_{\Lambda}(S)$	$U_{\Lambda}(P)$
ESC08a	-40.6	-39.5	+0.5
ESC08b	-39.4	-37.0	-0.6
ESC14	-40.8	-39.6	+0.4
ESC12	-40.0	-40.0	+1.5
ESC04a	-43.2	-38.4	-3.7
NSC97e	-37.7	-40.4	+4.0
NSC97f	-34.8	-39.1	+5.6

 $\begin{array}{l} \mathsf{U}_{\Lambda} \colon \text{one-body potential energy of } \Lambda \\ \mathsf{U}_{\Lambda}(\mathsf{S}) \colon \mathsf{S}\text{-state contribution in } \mathsf{U}_{\Lambda} \\ \mathsf{U}_{\Lambda}(\mathsf{P}) \colon \mathsf{P}\text{-state contribution in } \mathsf{U}_{\Lambda} \end{array}$

Many-body force in G-matrix interaction

Yamamoto, Furumoto, Yasutake and Rijken, PRC88,022801(2013); PRC90,045805(2014).

ESC(ESC12 or ESC14) + MPP + TBA

MPP: repulsion acting strongly at high density TBA : phenomenological 3-body attraction

ESC: effective ΛN force including $\Lambda N-\Sigma N$ effects $\rightarrow V_{\Lambda N}(r; k_F) = \sum_{i=1}^{3} (a_i + b_i k_F + c_i k_F^2) \exp(-r^2/\beta_i^2)$

MPP: universal repulsion by ¹⁶O + ¹⁶O scattering and consistent with massive neutron star
 TBA: phenomenologically determined by ⁸⁹_ΛY data

 $\rightarrow \Delta V_{\Lambda N}(r; k_F) = (a + bk_F + ck_F^2) \exp(-r^2/\beta_2^2)$

We use $V_{AN} + \Delta V_{AN}$ in HyperAMD calculation

Results: A dependence of B_{Λ} without many-body force

B_{Λ} values are different in ESC14 and ESC12 corresponding to odd force

 k_F is determined under ADA in each hypernucleus

Spin-ind. odd-state force: ESC14: weakly repulsive ESC12: strongly repulsive

ESC14 with weakly repulsive odd force overestimates B_Λ values
 ESC12 with stronger repulsive odd force gives smaller B_Λ values than ESC14, which are close to the observed data

Results: Many-body force effects

Adding MPP+TBA to ESC14 makes B_{Λ}^{cal} close to B_{Λ}^{exp} , whereas ESC12 deviates

Results : What is possible many-body force with ESC12?

In ESC12, MPP should be weakened to reproduce B_{Λ}^{exp}

MPP' + TBA': weakened for ESC12

- Weakened to reproduce ${}^{16}{}_{\Lambda}O$ and ${}^{89}{}_{\Lambda}Y$
- MPP' is too weak to explain massive NS

cf. Original MPP + TBA allowed with ESC14

- MPP gives maxim mass of NS
- TBA is determined by $^{89}{}_\Lambda {\rm Y}$ data

- In ESC12 with strongly repulsive odd-force, no MPP is allowed to explain NS
- Determining odd-state force will impose strong constraints on many-body force

Results: Many-body force effect

Many-body force effects with AMD

• Energy difference between $B_{\Lambda}^{\rm cal}$ with $\Lambda {
m N}$ force and $B_{\Lambda}^{\rm exp}$ is a room for many-body force

<u>In ESC14</u>

- With weakly repulsive odd-state force
- Many body repulsion (MPP) determined ⁻¹⁰ by ¹⁶O+ ¹⁶O scattering is allowed, which explains massive NS

In ESC12

- With strongly repulsive odd-state force
- Weakened many-body force is allowed

Determining odd-state force will impose strong constraints on many-body force

Backup

Overlap & BLmd

Y. Kanada-En'yo, M. Kimura, PRC**72**, 064322(2005) An extreme cases: superdeformation Y. Taniguchi, et al., PRC**76**, 044317 (2007)

If a Λ particle is added, what happen?

Y. Kanada-En'yo, M. Kimura, PRC**72**, 064322(2005) An extreme cases: superdeformation Y. Taniguchi, et al., PRC**76**, 044317 (2007)

An extreme cases: superdeformation

- Corresponding energy surface appear in ⁴¹_ΛCa
- Energy (local) minima are almost unchanged

An extreme cases: superdeformation

$\bullet\, {\sf B}_{\Lambda}$ is sensitive to nuclear deformation through overlap b/w Λ and N

M. Isaka, et al., PRC89, 024310(2014)

Backup

 $^{25}\Lambda Mg$

Ex.) ²⁴Mg

- Largely deformed nuclei far from magic number
- excitation energy [MeV] Low-lying 2nd 2⁺ band ulletindicates triaxial deformation

Backup: Excitation spectra of ²⁵ Mg

M. I., M. Kimura, A. Dote and A. Ohnishi, PRC 85 (2012), 034303.

Excitation energy of $K^{\pi}=2^+\otimes \Lambda_s$ band is shifted up by about 200 keV

Backup

 $^{27}\Lambda Mg$

Deformation of nuclei

Most of nuclei are deformed except for magic nuclei

60°

β

 $\beta = 0$

Spherical

Nuclear quadruple deformation (β,γ)

 $\gamma = 60^{\circ}$

()

- β : degree of quadrupole deformation
- γ: (tri)axiality

Oblate deformation short axis symmetry

long axis symmetry

Deformation of nuclei

Most of nuclei are deformed except for magic nuclei

60°

ß

 $\beta = 0$

Spherical

 \mathbf{N}

 $\sqrt{\gamma} \approx 30^{\circ}$

N°

 $\gamma = 0^{\circ}$

Nuclear quadruple deformation (β,γ)

 $\gamma = 60^{\circ}$

()

- β : degree of quadrupole deformation
- γ: (tri)axiality

Oblate deformation short axis symmetry

Density distribution with AMD calc

Triaxial deformation no symmetry axis

Prolate deformation long axis symmetry

Deformation of Mg nuclei

Split of *p*-state in ${}^{9}_{\Lambda}$ Be

Φ_{Λ}^{9} Be with 2 α cluster structure

p-states splits into 2 bands depending on the direction of *p*-orbits

Triaxial deformation

If ²⁶Mg is triaxially deformed nuclei → *p*-states split into 3 different state

Observing the 3 different *p*-states is strong evidence of triaxial deformation

Energy surface on (β , γ) plane

•*p*-states of ${}^{27}_{\Lambda}$ Mg

- 3 different *p* states appear by the energy variation with constraints
- With different spatial distribution of Λ (in $\gamma \simeq 30$ deg. region)

Results : Single particle energy of Λ hyperon • Λ single particle energy on (β , γ) plane $\varepsilon_{\Lambda}(\beta,\gamma) = E_{\Lambda p}(\beta,\gamma) - E_{core}(\beta,\gamma)$ $^{27}_{\Lambda}$ Mg (AMD, Λ in *p* orbit) $\varepsilon_{\Lambda}(\beta,\gamma)$: energy difference 60° (MeV) Lowest 0.060° $^{27}_{\Lambda}Mg$ [MeV] -2.0 ^{26}Mg 205 Λ in p orbit 30° (Pos

Single particle energy of Λ particle is different in each p state corresponding the difference of overlap between Λ and nucleons

Results : Single particle energy of Λ hyperon **A single particle energy on (\beta, \gamma) plane** $\varepsilon_{\Lambda}(\beta,\gamma) = E_{\Lambda p}(\beta,\gamma) - E_{core}(\beta,\gamma)$

 $^{27}_{\Lambda}$ Mg (AMD, Λ in p orbit)

Single particle energy of Λ particle is different in each p state corresponding the difference of overlap between Λ and nucleons

Results : Single particle energy of Λ hyperon ε_{Λ}

3 different p-states appear with triaxial deformation

Results: Excitation spectra

• 3 bands are obtained by Λ in *p*-orbit \rightarrow Splitting of the *p* states

Λ in *p* orbit coupled to deformed nuclei

Λ in *p* orbit coupled to deformed nuclei

Splitting of p orbit with triaxial deformation → 3 different p states

- 3 *p*-states with different spatial distributions of Λ
- Λ binding energy $b_{\Lambda}(\beta)$ is different each other due to triaxial deformation

0.4

0.6

M.I., et al.,

PRC87, 021304(R) (2013)

Results : Single particle energy of Λ hyperon ε_{Λ}

- Λ single-particle energy is different in each p orbit with triaxial deformation
- 3 different p-states appear if the core nucleus is triaxially deformed

Preliminary results: Production cross section of ${}^{27}_{\Lambda}Mg$

Production cross section of ${}^{27}AI(\gamma, K^+){}^{27}{}_{\Lambda}Mg$ reaction within HyperAMD + PWIA

- *s* states: all rotational bands obtained with AMD calc.
- *p* states: lowest $(1/2^{-}, 3/2^{-})$ states for each

Backup

Hypernuclear production cross section with AMD

Production cross section with AMD wf

Production cross section of hypernuclei with AMD wave functions to see effects of various structures

• In future: (γ, K⁺) reaction

T. Motoba *et al.*, PTP**185**, 224(2010)

$$\frac{d\sigma}{d\Omega} \left(\theta_{K}^{\text{Lab}}\right) = \frac{sp_{K}^{2} E_{K} E_{H}}{p_{K} \left(E_{H} + E_{K}\right) - E_{\gamma} E_{K} \cos \theta_{K}^{\text{Lab}}} \sum_{M_{f}} R(fi; M_{f}),$$

$$R(fi; M_{f}) = \frac{1}{2J_{i} + 1} \sum_{M_{i}} \Psi_{\text{GCM}}^{J_{f} \pi M_{f}} |\langle \Psi_{\text{GCM}}^{J_{f} \pi M_{f}} | O | \Psi_{\text{GCM}}^{J_{i} \pi M_{i}} \rangle|^{2}$$

$$A \text{MD} + \text{GCM wave functions}$$

$$Various \ structure$$

$$P(\mathbf{e}, \mathbf{e}' \mathbf{K}^{*}) \Lambda$$

$$O = \int d^{3} r \chi_{K}^{(-)*}(\mathbf{p}, \xi \mathbf{r}) \chi_{K}^{(+)}(\mathbf{k}, \mathbf{r}) \sum_{j=1}^{A} V_{-}^{(j)} \delta \left(\mathbf{r} - \eta \mathbf{r}_{j}\right) \langle \mathbf{k} - \mathbf{p}, \mathbf{p} | t | \mathbf{k}, 0 \rangle$$

$$Elementary \ amplitude$$

$$\rightarrow \text{Distorted wave}$$

Current status: PWIA based on effective nucleon number approach

Production cross section with AMD wf

•Example: ${}^{12}C(g, K^+){}^{12}{}_{\Lambda}B$

Production cross section with AMD wf

Example: ${}^{12}C(g, K^+){}^{12}{}_{\Lambda}B$

Current Status

• Application to ${}^{9}\text{Be}(K^{-}, \pi^{-}){}^{9}{}_{\Lambda}\text{Be}$

Current Status

• Application to ${}^{9}Be(K^{-}, \pi^{-}){}^{9}{}_{\Lambda}Be$

