Hypernuclei from the Lattice

Fabian Hildenbrand, IAS-4 & IKP-3, Forschungszentrum Jülich, Germany In collaboration with S.Elhatisari, Zhengxue Ren and Ulf.-G Meißner

Outline

- Motivation
- ► From NLEFT to (Hyper) NLEFT
 - Lattice Interaction
 - Results for light nuclei
 - Results for medium mass nuclei
- Summary and Outlook

Hypernuclear physics in a nutshell

- Strangeness extents the nuclear chart to a third dimension
- Unique opportunity to study the strong force
 Without the Pauli principle
- Typical approach from nuclear physics does not work since two-body data is sparse

Method: Lattice Monte Carlo

- Discretized chiral potentials ,contact interactions one-pion exchange, coulomb (Epelbaum et al.)
- Do euclidean time evolution and extract i.e. energies as transient energy $E = -\frac{d}{d\tau} \ln(Z(\tau))$

CH

Method: Lattice Monte Carlo

- Auxiliary Fields to handle many particles efficiently:
- Idea: Replace Interactions between nucleons with Interaction of a nucleon with an auxiliary field

$$\exp(-\frac{C}{2}(N^{\dagger}N)^{2}) = \sqrt{\frac{1}{2}} \int dA \exp\left[-\frac{A^{2}}{2} + \sqrt{C}A(N^{\dagger}N)\right]$$

Since Nucleons only interact with an auxiliary field⇒ Perfect for parallel computing

Very Successful Nuclear Program:

Using AFMC and shuttle algorithm

Wave function matching to obtain precise results for nuclei and charge radii

AFMC does not converge as good as in a pure nuclear matter simulation

Need to develop a method that threats this impurities more efficient

Treat Impurity as worldline:

(S.Bour, D.Lee, H.-W. Hammer, U.-G. Meißner)

(D. Frame, T. A. Lähde, D. Lee, U.-G. Meißner)

Starting point for (Hyper) Nuclear Lattice EFT

- Challenge with IFMC, need to collect millions of worldlines
 - Can we still do hypernuclear calculations with AFMC ?
 - Important for possible applications with many Hyperons

 Taylor interaction to work non-perturbative with our best NN interaction

Construction of a first Lattice ΛN interaction

Construction of a first Lattice ΛN interaction

LICH

	Results: Two Body	Experiment
During Evolution:	$B_{\Lambda}({}^{3}\text{H}_{\Lambda}) = 0.38 \pm 0.08 \text{ MeV}$	0.164 ± 0.43 MeV
Spin-averaged Interaction: $3^{3}S_{1} + {}^{1}S_{0}$	Box effect, con	sistent with exact L=12 result
$C = \frac{4}{4}$ Perturbative part:	$B_{\Lambda}({}^{4}H_{\Lambda}^{0^{+}}) = 2.08 \pm 0.16 \text{ MeV}$	2.169 ± 0.042 MeV
	$B_{\Lambda}({}^{4}H_{\Lambda}^{1}) = 1.20 \pm 0.16 \text{ MeV}$	$1.081 \pm 0.042 \text{ MeV}$
Spin-dependent Interaction: ${}^{3}S_{1} - {}^{1}S_{0}$	Splitting quite good, missing 0.2 MeV	
$C_S = \frac{-\varepsilon_1 - \varepsilon_0}{4}$	$B_{\Lambda}({}^{5}\mathrm{He}_{\Lambda}) = 3.39 \pm 0.06 \mathrm{MeV}$	$3.102 \pm 0.03 \text{ MeV}$
Nuclear Interaction:	Smaller overbinding compared to other LO Calculations	
N ³ LO interaction, same as for WFM results	$B_{\Lambda}(^{7}\text{Li}_{\Lambda}) = 5.07 \pm 0.50 \text{ MeV}$	5.619 ± 0.06 MeV
	Typically overbound by calculations	

A=5 system only slightly overbound

Can three-body forces help us here?

Structure of contact three-body forces

Effectively N3LO χ EFT(NN) + LO π EFT(YN)

Results: Fitting 3-Body forces

Three-Body Results (Light nuclei), contrained by ${}^{9}B_{\Lambda}$

Three-Body Results (towards medium mass nuclei)

How does the Λ glue the core together? Example: TBF

Contributes to nuclear uncertainty

Possible Paths to improvement

Summary and Outlook

Good Results for light hypernuclei nuclei A=3-16 with $N^3LO(NN)$ and LO(YN) interaction

Method scales with A, straightforward application to the whole hypernuclear chart

Many possible path ways to improve the results

Calculate the hypernuclear chart

Many excited states in A=7/9 hypernuclei

