Inference of hyperon–nucleon interactions from light hypernuclei

DANIEL GAZDA

Nuclear Physics Institute Řež/Prague

SPICE: Strange hadrons as a Precision tool for strongly InteraCting systEms

ECT*, Trento, Italy, May 13-17, 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

Petr Navrátil

TRIUMF, Canada

Christian Forssén

Chalmers University of Technology, Sweden

Axel Pérez-Obiol

Barcelona Supercomputing Center, Spain

Avraham Gal, Eli Friedman

The Hebrew University of Jerusalem, Israel

℀TRIUMF

Introduction & motivation

Strangeness physics

- Interdisciplinary field connecting particle physics, nuclear physics, and astrophysics
- One of its major goals is to understand the elusive interaction of hyperons with nucleons and the nuclear medium

Theoretical analysis of hypernuclei

- Using 'effective' YN interaction models & mean-field / shell-model approaches – successful but difficult to link with the underlying free-space YN interaction, limited predictive power
- Using 'realistic' (free-space) YN interaction models ...

Constraining YN interactions

- YN scattering 'pure' but very difficult to realize, sparse database with large uncertainties (J-PARC)
- Heavy-ion collisions production and decays of light hypernuclei, correlation femtoscopy (HADES, ALICE, STAR)
- Final-state interactions in hyperon photoproduction (CLAS)
- ► Lattice QCD (HAL QCD, NPLQCD)
- Hypernuclei precise spectroscopy of hypernuclear energy levels

Introduction & motivation

Theoretical analysis of hypernuclei using realistic YN interactions

- Combines modern developments of YN interactions based on *x*EFT and ab initio few- and many-body approaches
- Computationally demanding
- \blacktriangleright Can reveal deficiencies of existing YN interaction models \rightarrow calibration?

Calibration of YN interaction models using hypernuclei requires

- Advanced 'ab initio' computational methods
- Quantified method uncertainties, σ_{method} associated with the solution of the many-body problem
- Quantified model uncertainties, σ_{model} associated with the choice of the nuclear interaction
- Overcoming the computational demands large number of evaluations
- Sensitivity analysis hypernuclear spectra might not be sensitive to certain parameters (LECs) of the YN interaction models
- Simultaneous fitting of other observables

Ab initio calculations of light hypernuclei

Ab initio calculations of light hypernuclei

Ab initio methods aim to solve the (hyper)nuclear many-body problem starting from realistic (free-space) interactions exactly or with controlled approximations

Ab initio no-core shell model

Quasi-exact method to solve the few- and many-body Schrödinger equation

$$\bigg(\sum \frac{\hat{\boldsymbol{p}}_i^2}{2m_i} + \sum \hat{\boldsymbol{V}}_{NN;ij} + \sum \hat{\boldsymbol{V}}_{NNN;ijk} + \sum \hat{\boldsymbol{V}}_{YN;ij}\bigg) \Psi = \boldsymbol{E} \Psi$$

[Navrátil et al., JPG 36, 083101 (2009); DG et al., FBS 55, 857 (2014); Wirth et al., PRL 113, 192502 (2014); Le et al., EPJA 56, 301 (2020)]

 Wave function is expanded and Hamiltonian is diagonalized in a finite A-particle harmonic oscillator (HO) basis

$$\Psi(\mathbf{r}_{1},\ldots,\mathbf{r}_{A}) = \sum_{N \leq N_{max}} \Phi_{N,\omega}^{HO}(\mathbf{r}_{1},\ldots,\mathbf{r}_{A})$$

Converges to exact results for $N_{max} \rightarrow \infty$

- Input NN+NNN and YN interactions derived from χ EFT
 - ► The NNLO_{sim} family at NNLO [Carlsson et al., PRX 6, 011019 (2016)]
 - ► Jülich YN at LO [Polinder et al., NPA 779, 244 (2006)]

Ab initio calculations of light hypernuclei: method uncertainties

Method uncertainties associated with convergence of the solution of the many-body problem

- NCSM-calculated energies typically exhibit undesired dependence on the HO basis frequency ħω and truncation N_{max}
- Convergence properties of observables calculated in finite HO bases are rather well understood [Wendt et al., PRC 91, 061391 (2015)]
 - NCSM model-space parameters (N_{max}, ħω) recast into infrared (IR) and ultraviolet (UV) scales (L_{IR}, Λ_{UV})
 - In a regime with negligible UV corrections, IR corrections are universal

 $E(L_{IR}) = E_{\infty} + a_0 \exp(-2\kappa_{\infty}L_{IR}) + \cdots$

Ab initio calculations of light hypernuclei: method uncertainties

 Infrared extrapolation formulated as a Bayesian inference problem

$$\begin{split} \mathsf{E}(\mathsf{L}_{\mathsf{IR}}) &= \mathsf{E}_{\infty} + \Delta \mathsf{E}_{\mathsf{IR}} \exp(-2\kappa_{\infty}\Delta\mathsf{L}_{\mathsf{IR}}) \\ &\times \left(1 + \frac{\epsilon_{\mathsf{NLO}}}{\kappa_{\infty}(\mathsf{L}_{\mathsf{IR},\,\mathsf{max}} + \Delta\mathsf{L}_{\mathsf{IR}})}\right), \end{split}$$

with data $\mathcal{D} = \{E(L_{IR,i})\}$ calculated in different model spaces and $\vec{\epsilon}_{NLO} \sim N(0, \Sigma(\bar{\epsilon}, \rho))$ providing a stochastic model for the NLO energy correction [DG, Htun, Forssén, PRC 106, 054001 (2022)]

• Validation for $^{3}_{\Lambda}H$

6

		B^{Exp}_{Λ} (MeV)	B^{th}_{Λ} (MeV)	
			median	68 % Cl _{method}
 Method uncertainty quantified by 68 % credible interval for the extrapolated 	³ Η	0.164(43)	0.166	[-0.001, +0.001]
	_Λ H	2.157(77)	2.78	[-0.01, +0.01]
	⁴ ∕he	2.39(3)	2.76	[-0.01, +0.01]
	Λ ⁵ He	3.12(2)	6.03	[-0.28, +0.18]
energy E_∞	${}^{4}_{\Lambda}$ H; 1 $^{+}$	1.067(80)	1.75	[-0.12, +0.10]
	$^4_{\Lambda}$ He; 1 $^+$	0.984(50)	1.71	[-0.13, +0.10]

- Dominating source of uncertainty of hypernuclear observables likely comes from the underlying YN interaction $\leftarrow \chi$ EFT truncation, regulator artifacts, calibration data uncertainties
- Energy levels of light hypernuclei are also sensitive to details of the employed nuclear NN+NNN interactions
- One can naively expect that calculated Λ separation energies should be insensitive to the choice of nuclear interaction, $B_{\Lambda} = E({}^{A}Z) E({}^{A}_{\Lambda}Z)$
- ► A rather weak residual dependence of B_A was found using a limited set of phenomenological [Nogga et al., PRL 88, 172501 (2002)] and *χ*EFT [Le et al., EPJA 56, 301 (2020)] NN interactions

Ab initio calculations of light hypernuclei: model uncertainties

- ► To expose the magnitude of systematic model uncertainties in B_A we employed [DG, Htun, Forssén, PRC 106, 054001 (2022)] the NNLO_{sim} family of 42 different nuclear NN+NNN interactions [Carlsson et al., PRX 6, 011019 (2016)]
 - NNLO_{sim} LECs fitted to reproduce simultaneously πN, NN, and NNN low-energy observables
 - Experimental data uncertainties propagate into the LECs
- Model uncertainty connected to the choice of nuclear Hamiltonian quantified by variance, σ²(NNLO_{sim}), of predictions for B_Λ

For LO YN:

 $\frac{{}^{3}_{\Lambda}H}{\sigma_{model} (keV)} \frac{{}^{3}_{\Lambda}H}{20} \frac{{}^{4}_{\Lambda}H}{80} \frac{{}^{4}_{\Lambda}He}{{}^{4}_{\Lambda}He} \frac{{}^{4}_{\Lambda}He}{{}^{4}_{\Lambda}He_{1^{+}}} \frac{{}^{5}_{\Lambda}He}{{}^{5}_{\Lambda}He}$

 $E_{sep}^{th} \left({}_{\Lambda}^{4}\mathrm{H},\mathrm{He;}\,0^{+}
ight) \left(\mathrm{MeV}
ight)$ F 6.5 $_{\rm sep}^{\rm th}({}^{4}_{\Lambda}{\rm H},{\rm He};1^{+})~({\rm MeV})$ 1.6 450500 550600 Λ_{NN} (MeV)

 T_{Lab}^{max} (MeV)

150

250

► A smaller NN+NNN-model dependence was found for NLO and NNLO YN interactions [Le et al., EPJA 60, 3 (2024)]

Ab initio calculations of hypernuclei: the curse of dimensionality

- Ab initio methods provide a reliable link between the properties of hypernuclei and the underlying hyperon-nucleon interactions
- Is it possible to directly incorporate them in optimization of hyperon-nucleon forces which require a large number of model evaluations?

This is not feasible given their computational cost

 Reoptimization of 2 LECs to the p-shell hypernuclei Λ separation energies [Knoll, Roth, PLB 846, 138258 (2023)] Emulating ab initio NCSM calculations: eigenvector continuation

Emulating ab initio NCSM calculations: eigenvector continuation

Eigenvector continuation is based on the fact that when a Hamiltonian depends smoothly on some real-valued control parameter(s), any eigenvector is a smooth function of that parameter(s) and its trajectory is confined to a very low-dimensional subspace

[Frame et al., PRL 121, 032501 (2018); König et al., PLB 810, 135814 (2020)]

- ► Write the Hamiltonian in a **linearized** form $H(\vec{c}) = H_0 + \sum c_i H_i$
- Select 'training' points $\{\vec{c}_i\}$ and solve the exact problem $H(\vec{c}_i) |\psi_i\rangle = E_i |\psi_i\rangle$
- ► Project the Hamiltonian onto the subspace of training eigenvectors {|ψ_i⟩} and diagonalize the generalized eigenvalue problem

$$\tilde{\mathsf{H}}(\vec{\mathsf{C}}_{+}) \ket{\tilde{\psi}} = \tilde{\mathsf{E}}_{+} \tilde{\mathsf{N}} \ket{\tilde{\psi}},$$

where $\tilde{H}_{ij} = \langle \psi_i | H(\vec{c}_+) | \psi_j \rangle$, $\tilde{N}_{ij} = \langle \psi_i | \psi_j \rangle$ and \tilde{E}_+ approximates E_+

Emulating ab initio NCSM calculations: eigenvector continuation

Hypernuclear Hamiltonian with LO YN interactions can be linearized,

 $H = H_0 + \frac{C_{27}V_{27}}{V_{27}} + \frac{C_{10*}V_{10*}}{V_{10*}} + \frac{C_{10}V_{10}}{V_{10}} + \frac{C_{8a}V_{8a}}{V_{8a}} + \frac{C_{8s}V_{8s}}{V_{8s}},$

where C_is are the 5 independent $SU_f(3)$ LECs and H_0 contains the kinetic energy, NN+NNN interactions, and hypernuclear meson-exchange and Coulomb interactions

- ► ${}^{5}_{\Lambda}$ He; ${}^{1}_{2}$, model space truncation N_{max} = 12
- Vary one LEC, C₂₇, within ±100 % relative variation with respect to the nominal LOYN(Λ_{YN}=600 MeV) value
- Select 1, 2, 4 exact NCSM eigenvectors to construct the emulators
- Accurate and lighting-fast emulation of ab initio NCSM calculations
- ► Continued eigenvectors stay within the same $(N_{max}, \hbar\omega)$ model space \rightarrow extrapolation of observables to infinite model space is still necessary

Emulating ab initio NCSM calculations: cross validation

- Select 2, 4, 8, 16, 32 points in the 5-dimensional space of LOYN LECs using the Latin hypercube space-filling design in a ±20 % domain around the nominal values to train the emulators
- ► Select randomly 256 exact NCSM calculations within the same domain of LECs

► We can achieve relative accuracy of |δ_{rel}| < 1, 0.1, 0.002 % using 8, 16, 32 training points</p>

Emulating ab initio NCSM calculations: cross validation

- Select 2, 4, 8, 16, 32 points in the 5-dimensional space of LOYN LECs using the Latin hypercube space-filling design in a ±20 % domain around the nominal values to train the emulators
- ► Select randomly 256 exact NCSM calculations within the same domain of LECs

▶ We can achieve relative accuracy of $|\delta_{\rm rel}| < 1, 0.1, 0.002$ % using 8, 16, 32 training points

Global sensitivity analysis

- Addresses the question of how variance of the output of a model can be apportioned to variances of the model inputs [Saltelli et al., CPC 181, 259 (2010)]
- ► Allows to identify the most influential LECs of *χ*EFT YN interactions which determine the hypernuclear energy spectra
- For an output Y = f(a) of a model f, we decompose the total variance as

$$\label{eq:Var} \text{Var}\left[Y\right] = \sum_{i=1}^d V_i + \sum_{i < j=1}^d V_{ij} + \cdots \,,$$

where

$$\begin{split} & \mathsf{V}_{i} = \mathsf{Var}\left[\mathsf{E}_{\vec{\alpha} \sim (\alpha_{i})}[\mathsf{Y}|\alpha_{i}]\right], \\ & \mathsf{V}_{ij} = \mathsf{Var}\left[\mathsf{E}_{\vec{\alpha} \sim (\alpha_{i},\alpha_{j})}[\mathsf{Y}|\alpha_{i},\alpha_{j}]\right] - \mathsf{V}_{i} - \mathsf{V}_{j}, \end{split}$$

are variances of conditional expectation of Y

- The variance integrals are computed by using quasi-MC sampling, including 95 % confidence intervals
- The first-, second-, and higher-order (Sobol') sensitivity indices

$$S_i = \frac{V_i}{Var\left[Y\right]}, \quad S_{ij} = \frac{V_{ij}}{Var\left[Y\right]}, \quad \cdot \cdot$$

Total effect

$$S_{Ti} = S_i + S_{ij} + \cdots$$

Identify the most influential LECs:

Y = Λ separation energies of ${}_{\Lambda}^{3}H_{\frac{1}{2}^{+}}$, ${}_{\Lambda}^{4}H_{0^{+}}$, ${}_{\Lambda}^{4}H_{0^{+}}$, ${}_{\Lambda}^{4}H_{1^{+}}$, ${}_{\Lambda}^{4}H_{1^{+}}$, ${}_{\Lambda}^{5}He_{\frac{1}{2}^{+}}$, $\vec{\alpha} =$ the 5 LECs of the LOYN interaction; independent and uniformly distributed within $\pm 2\%$ ($\pm 20\%$) variation around the nominal values of LOYN(Λ_{YN} =600 MeV) for ${}_{\Lambda}^{3}H$ (A = 4, 5)

- $\label{eq:static} \blacktriangleright \ S_i \approx S_{Ti} \rightarrow energies \\ are additive in all \\ LECs$
- C₂₇ is responsible for most of the variation in energy

$$\begin{split} C_{1S_{0}}^{\Lambda\Lambda} &= \frac{1}{10}(9\mathsf{C}_{27} + \mathsf{C}_{8s}) \\ C_{3S_{1}}^{\Lambda\Lambda} &= \frac{1}{2}(\mathsf{C}_{10^{*}} + \mathsf{C}_{8a}) \\ C_{3S_{1}}^{\Sigma\Sigma} &= \mathsf{C}_{10} \end{split}$$

Identify the most influential LECs:

Y = Λ separation energies of ${}_{\Lambda}^{3}H_{\frac{1}{2}+}$, ${}_{\Lambda}^{4}H_{0^{+}}$, ${}_{\Lambda}^{4}H_{0^{+}}$, ${}_{\Lambda}^{4}H_{1^{+}}$, ${}_{\Lambda}^{4}H_{1^{+}}$, ${}_{\Lambda}^{5}He_{\frac{1}{2}^{+}}$, $\vec{\alpha} =$ the 5 LECs of the LOYN interaction; independent and uniformly distributed within $\pm 2\%$ ($\pm 20\%$) variation around the nominal values of LOYN(Λ_{YN} =600 MeV) for ${}_{\Lambda}^{3}H$ (A = 4, 5)

- S_i ≈ S_{Ti} → energies are additive in all LECs
- C₂₇ is responsible for most of the variation in energy

$$\begin{split} C_{1S_{0}}^{\Lambda\Lambda} &= \frac{1}{10} (9 \textbf{C}_{27} + \textbf{C}_{8s}) \\ C_{3S_{1}}^{\Lambda\Lambda} &= \frac{1}{2} (\textbf{C}_{10^{*}} + \textbf{C}_{8a}) \\ C_{3S_{1}}^{\Sigma\Sigma} &= \textbf{C}_{10} \end{split}$$

Identify the most influential LECs:

Y = Λ separation energies of ${}_{\Lambda}^{3}H_{\frac{1}{2}^{+}}$, ${}_{\Lambda}^{4}H_{0^{+}}$, ${}_{\Lambda}^{4}H_{0^{+}}$, ${}_{\Lambda}^{4}H_{1^{+}}$, ${}_{\Lambda}^{4}H_{1^{+}}$, ${}_{\Lambda}^{5}He_{\frac{1}{2}^{+}}$, $\vec{\alpha} =$ the 5 LECs of the LOYN interaction; independent and uniformly distributed within $\pm 2\%$ ($\pm 20\%$) variation around the nominal values of LOYN(Λ_{YN} =600 MeV) for ${}_{\Lambda}^{3}H$ (A = 4, 5)

- S_i ≈ S_{Ti} → energies are additive in all LECs
- C₂₇ is responsible for most of the variation in energy

$$\begin{split} C_{1S_{0}}^{\Lambda\Lambda} &= \frac{1}{10} \big(9 \overline{C}_{27} + C_{8s} \big) \\ C_{3S_{1}}^{\Lambda\Lambda} &= \frac{1}{2} \big(C_{10^{*}} + C_{8a} \big) \\ C_{3S_{1}}^{\Sigma\Sigma} &= C_{10} \end{split}$$

- Simultaneous fitting of bound-state and scattering observables is inevitable
- ► Can we improve the description of A separation energies in light hypernuclei with a small variation of LO YN LECs?

- Proof-of-principle simple least-squares optimization
 - LECs restricted up to ± 40 % variation around the nominal values of LOYN(A_{YN}=600 MeV)
- ► Theoretical precision σ²_{th} = σ²_{method} + σ²_{model}

- Simultaneous fitting of bound-state and scattering observables is inevitable
- ► Can we improve the description of A separation energies in light hypernuclei with a small variation of LO YN LECs?

- Proof-of-principle simple least-squares optimization
- LECs restricted up to ± 40 % variation around the nominal values of LOYN(A_{YN}=600 MeV)
- ► Theoretical precision $σ_{th}^2 = σ_{method}^2 + σ_{model}^2$

- Simultaneous fitting of bound-state and scattering observables is inevitable
- ► Can we improve the description of A separation energies in light hypernuclei with a small variation of LO YN LECs?

- Proof-of-principle simple least-squares optimization
- LECs restricted up to ± 40 % variation around the nominal values of LOYN(Λ_{YN}=600 MeV)
- ► Theoretical precision $\sigma_{th}^2 = \sigma_{method}^2 + \sigma_{model}^2$

Summary & outlook

Summary & outlook

Ab initio calculations of light hypernuclei

► Hypernuclear observables, such as A separation energies in light hypernuclei, suffer from sizable theoretical uncertainties associated with the choice of nuclear interaction (with LO *x*EFT YN interaction)

Emulating ab initio NCSM

- Eigenvector continuation provides fast and accurate emulation of ab initio calculations of light hypernuclei
- ► Global sensitivity analysis identifies **the most influential LECs** of χ EFT YN interactions which **determine the energy spectra** of light hypernuclei
- A significantly better description of energy levels of light hypernuclei can be achieved with a relatively small variation of the LECs

Outlook

Simultaneous optimization of YN interactions using bound-state and scattering observables with accompanying uncertainty quantification Thank you!