Excitation and decay of light hypernuclei

C.A. Bertulani

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

SPICE: Strange hadrons as a Precision tool for strongly InteraCting systEms, ECT, Trento, Italy, 13-17 May 2024

From laboratory experiments to neutron stars

neutron star

~ 10 km

From bones to dinosaurs

Reconstruction of Ingentia prima from the Late Triassic (205-210Ma) of Argentina. Total length 8-10 me...

Neutron stars

$$\frac{dP}{dr} = -\frac{G\rho(r)M(r)}{r^2} \left[1 + \frac{P(r)}{\rho(r)}\right] \left[1 + \frac{4\pi r^3 P(r)}{M(r)}\right]$$
$$\frac{dM}{dr} = 4\pi r^2 \rho(r)$$
Tolman-Oppenheimer-V

$$\frac{\mathrm{E}}{\mathrm{A}}[\rho] = \frac{\mathrm{E}}{\mathrm{A}}[\rho_0] + \frac{1}{18} \mathrm{K}_{\infty} \left(\frac{\rho - \rho_0}{\rho_0}\right)^2 + \cdots$$

$$K_{\infty} = 9\rho^2 \frac{d^2 \left[E / A \right]}{d\rho^2} \bigg|_{\rho_0}$$

radius (km)

Skyrme	ρ ₀	E ₀	\mathbf{K}_{∞}	J	L	K _{sym}
SLy5	0.161	-15.99	229.92	32.01	48.15	-112.76
SkM*	0.160	-15.77	216.61	30.03	45.78	-155.94
Skxs20	0.162	-15.81	201.95	35.50	67.06	-122.31

L crucial for neutron matter

EOS of neutron stars

EOS & Neutron stars

Pethick, Ravenhall, ARNPS 45 (1995) 429

 ρ_0

Hyperons and neutron stars

N

Tolos, Fabbietti, PPNP 112 103770 (2020)

NN interactions and NA interactions

Hypertriton and ΛN interaction

Nuclear halos and interaction radius

Production of hypernuclei

Particles produced coalesce into nuclei if they are close in space and momentum.

$$C_A = \frac{2J_A + 1}{2^A} \frac{1}{\sqrt{A}m_T^{A-1}} \left(\frac{1}{R^2}\right)$$

R = source size, $r_A =$ nuclear size m_T = transverse mass of coalesc. part.

particle production

Production & Decay of Hypertriton

Use active target to:

- (a) Produce hypertriton
- (b) Reconstruct hypertriton by measuring weak decay $(^{3}_{\Lambda}H \rightarrow \pi^{-} + ^{3}He)$
- (c) Interaction cross section though meson decay vertex distribution

Extraction of Hypertriton radius

Hypertriton wavefunction

Pionless EFT

- (a) Momentum scales < pion mass
- (b) Dibaryon field Δ_d
- (c) Cutoff parameter Λ_c
- (d) Simplified 3-body force $H(s_0, \Lambda_c)$
- (e) Asymptotic analysis

Hildenbrand, Hammer, Phys. Rev. C, 100, 034002 (2019)

Hypertriton wavefunction (EFT)

$\sqrt{\langle r_{\Lambda-NN'}^2\rangle} [\text{fm}]$	$\sqrt{\langle r_{N'-\Lambda N}^2\rangle} [\text{fm}]$	$\sqrt{\langle r_{NN'}^2 \rangle}$ [fm]
10.79	3.96	2.96
+3.04/-1.53	+0.40/-0.25	+0.06/-0.05
+0.03/-0.02	+0.03/-0.03	+0.03/-0.04

Confirms that the "picture" as a **two body system** consisting of a deuteron and a Λ is a good approximation.

Congleton, JPG 18, 339 (1992) + many others

Hypertriton wavefunction

Deuteron radial s-wave, u(r)/r, and dwave, w(r)/r as a function of the protonneutron distance r using Av18 interaction.

Wiringa, Stoks, Schiavilla Phys. Rev. C 51, 38 (1995)

Hypertriton + nucleon density

r [fm]

8

Hypertriton destruction

$$T(b) = T_{\Lambda}(b) T_{p}(b) T_{n}(b)$$

Transmission probability

$$\begin{aligned} \Gamma_i(b) &= \int d^2 s_i dz_i(z_i, \boldsymbol{s}_i - \boldsymbol{s}_i) \\ &= \exp\left[-\sigma_{pi} Z_T \int dz_i\right] \\ &= \exp\left[-\sigma_{ni} N_T \int dz_i\right] \end{aligned}$$

 $i = \Lambda, p, \text{ or } n$

1.5 GeV/nucleon ${}^{3}_{\Lambda}$ H incident on 12 C, 120 Sn, 208 Pb $\sigma_{np} = 45.8 \text{ mb}$ $\sigma_{pp} = 40 \text{ mb}$ $\sigma_{\Lambda p} = 35 \text{ mb}$

- **b**) $dz' \rho_p^T(z', s)$ $dz' \rho_n^T(z', s)$

Hypertriton destruction

Transmission probability

Transition from full opaque-ness to full transparency displays changes in the slope due to structure of the

Sensitivity to hypertriton interaction cross sections

1.5 GeV/nucleon ${}^{3}_{\Lambda}$ H incident on 12 C, 120 Sn, 208 Pb

Electromagnetic response of the hypertriton

Electromagnetic response of the hypertriton

$$\frac{dB(E)}{dE} = \frac{1}{\hbar} \sqrt{\frac{\mu}{2E}} |\langle g. s. || \mathcal{O}_{E1} || E, l \rangle|^2$$
Analytical model:
CB, Sustich
Phys. Rev. C 46 (1992) 2340

$$\frac{dB(E)}{dE} = C \sqrt{B_{\Lambda}} \frac{E^{3/2}}{(E+B_{\Lambda})^4}$$
Emax = $\frac{3}{5}B_{\Lambda}$

$$E_{max} = \frac{3}{5}B_{\Lambda}$$

EM resp	onse c	of the hy	pertrito	n	4000	
1.5 GeV/nu	c. $^{3}_{\Lambda}$ H inci	dent on ¹² C,	¹²⁰ Sn, ²⁰⁸ Pb	_	3000	-
B_{Λ} (keV)	$\sigma_{C}(C)$	$\sigma_{C}(Sn)$	$\sigma_{C}(Pb)$	[mb	2000	
100	22.9 14 9	1457. 942	3820. 2464	σ_{C}	1000	-
200 300	10.7 71	672. 438	1755. 1142		0	- •·····
500	4.1	253.	656.		3000	_ G@
B_{Λ} (keV)	$\sigma_I(C)$	$\sigma_I(Sn)$	$\sigma_I(Pb)$	[dm	2000	-
100 150	842. 824.	2516. 2424.	3098. 2982.	<i>α</i> [/] [1000	_
200 300	807. 783.	2341. 2220.	2876. 2721.			
500	749.	2043.	2490.			100 200 3

EM response of the hypertriton

- Basis expansion for intrinsic $\boldsymbol{\varphi}$
- Eikonal scattering waves
- Nuclear + EM potentials
- Relativity

s p d

- Continuum discretization

- Coupled-channels
- (relativistic CDCC)

Electromagnetic response of loosely bound nuclei

$$i\hbar v \frac{d}{dz} S_c(\mathbf{b}, z) = \sum_{c'} \langle \Phi_c | H_{int}(\mathbf{b}, z) | \Phi_{c'} \rangle S_{c'}(\mathbf{b}, z) \exp\left[i \frac{E_{cc'} z}{\hbar c}\right] \qquad H_{int} = f_c(\mathbf{q}) = -\frac{ik}{2\pi} \int db \exp(i\mathbf{q} \cdot \mathbf{b}) \left[S_c(\mathbf{b}, z) - \delta_{0c}\right]$$

$$\frac{d\sigma_c}{d\Omega} = \sum_{M_0, M_c} \left| f_c^{(M_c - M_0)}(\theta, E_c) \right|^2$$

 $\overline{2\pi}$

$$\left| E_c \right\rangle = \int dE'_c \, \Gamma(E'_c) \, \left| E'_c \right\rangle$$

$$\left(\begin{array}{c} 1 \end{array} \right)$$

$$\Gamma(E_j) = \begin{cases} \overline{\Delta E} & \text{if } (j-1)\Delta E < E_c < j\Delta E \\ 0, & \text{otherwise} \end{cases}$$

CB, PRL 94, 072701 (2005)

$= H_{EM} = easy$ $= H_{nucleus-nucleus}$ ry complicated

nn scattering length

pp scattering lentgth

$$\left(\frac{d\sigma}{d\Omega_{c.m.}}\right)^{HOES} = \frac{1}{4k^2} \left(\left| F(\mathbf{p}, \mathbf{k}) - 2T_{CN}(p, k) \right|^2 + 3 \left| F(\mathbf{p}, \mathbf{k}) \right|^2 \right)$$

$$F(\mathbf{p},\mathbf{k}) = m_p e^2 e^{-\pi\eta} \Gamma(1+i\eta) (p^2-k^2)^{i\eta} g(\mathbf{p},\mathbf{k})$$

$$g(\mathbf{p},\mathbf{k}) = (\mathbf{p}-\mathbf{k})^{-2(1+i\eta)} \pm (\mathbf{p}+\mathbf{k})^{-2(1+i\eta)}$$

 \Diamond

ф

Energy differences between mirror nuclei small as compared to experiment (Nolen-Schiffer anomaly)

	Argonne v ₁₈	w/o v ^{EM}		Argonne v ₁₈
¹ a _{nn} (fm) ¹ r _{nn} (fm)	—18.487 2.840	—18.818 2.834	$^{1}a_{pp}(fm)$ $^{1}r_{pp}(fm)$	7.806 2.788
	Gaussian	w/o v ^{EM}		Gaussian
$a_{nn}(fm)$			$a_{pp}(fm)$	7.806 2 77 + 0 08

Two-body nonmesonic decay modes, $\Lambda N \rightarrow NN$, distinguishable from $\Lambda \rightarrow \pi N$ because of large decay energy $M_{\Lambda} - M_N = 176$ MeV. Sensitive to weak interaction couplings (such as $g_{\Lambda N\rho}$ or g_{NNK}) not available to the free Λ decays.

At the quark level:

Effective Lagrangian for $\Delta T=1/2$: Isgur et al, PRL 64, 161 (1990)

$$H_{weak} = \frac{G_F}{2} sin\theta_c cos\theta_c [\bar{u}\gamma_\mu (1-\gamma_5)]$$
$$H_{weak} = -G_F m_\pi^2 \overline{\psi_N} (A_\pi + B_\pi \gamma_5) \phi_\pi \cdot A_\pi = 1.05, \qquad B_\pi = -7.15$$

CB, Lobato, EPJ A 57, 67 (2021)

$$\psi_f^{(-)} = \left[1 + \left(E^{(-)} - H_0\right)^{-1} t_{pn}^{\dagger}\right] \chi^{(-)}(\boldsymbol{p}_p)$$

Fadeev + approximations

$$\begin{split} \Gamma &= \frac{2\pi}{\hbar} \sum \int \left| \left\langle \chi^{(-)}(\mathbf{p}_p) \chi^{(-)}(\mathbf{p}_n), \Psi_{A-2}(SM_S J_F M_F) \right| \right. \\ & \left. \times \left[1 + t_{pn} \left(\Delta_n - \frac{\hbar^2 \mathbf{P}_{pn,cm}^2}{4m_N} \right) (\Delta_n - H_0 + i\varepsilon)^{-1} \right] \right. \\ & \left. \times V_{weak} \left| \Psi_A(J_I M_I) \right\rangle \right|^2 \delta \left(E_{pn,cm} + E_{pn,rel} - \Delta_n \right) \\ & \left. \times \frac{d\mathbf{p}_p}{(2\pi)^3} \frac{d\mathbf{p}_n}{(2\pi)^3} \right. \end{split}$$

 H_0 = kinetic energies of p and n

 Δ_n = total energy of three-body system

 $\chi^{(-)}(\boldsymbol{p}_n)\psi_{A-2}$

and similarly for nn

Watson, PR 88,1163 (1952)
Migdal, JETP 1, 2 (1954)

$$F(E_{nN}) = \left| \frac{\psi(k_{nN}, r_{nN})}{\psi^{(0)}(k_{nN}, r_{nN})} \right|^{2}$$

$$= \frac{(1/r_{nN} - 1/a_{nN} + k_{nN}^{2}r_{nN})}{(-1/a_{nN} + k_{nN}^{2}r_{nN}/2)^{2}}$$

$$\Gamma = \frac{2\pi}{\hbar} \sum \int \left| \left\langle \chi^{(-)}(\mathbf{p}_{p})\chi^{(-)}(\mathbf{p}_{n}), \Psi_{A-2}(SM_{S}J_{F}M_{F}) \right| \right|$$

$$\times \left[1 + t_{pn} \left(\Delta_{n} - \frac{\hbar^{2}\mathbf{P}_{pn,cm}^{2}}{4m_{N}} \right) (\Delta_{n} - H_{0} + i\varepsilon)^{-1} \right]$$

$$\times V_{weak} \left| \Psi_{A}(J_{I}M_{I}) \right\rangle \right|^{2} \delta \left(E_{pn,cm} + E_{pn,rel} - \Delta_{n} \right)$$

$$\times \frac{d\mathbf{p}_{p}}{(2\pi)^{3}} \frac{d\mathbf{p}_{n}}{(2\pi)^{3}} .$$

 $\frac{(r_{nN}/2)^2}{(2^2+k_{nN}^2)}$

Low energy peak reasonable for the pn channel, while it is quite bad for the nn channel

Data:

Parker, PRC 76, 035501 (2007)

FSI in NMWD

Effect of FSI the ${}^{1}S_{0}$ singlet neutronneutron (nn) and neutron-proton (np) ${}_{\Lambda}A$ non-mesonic decay

Spin correlations

$$P(\mathbf{p}_{1}, \mathbf{p}_{2}) = \int d^{3}r_{1}d^{3}r_{2} \left\| \left| \Lambda^{(+)}(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{r}_{1}, \mathbf{r}_{2}) \right|^{2} \right.$$
$$\pm \mathcal{M}\Lambda^{(-)}(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{r}_{1}, \mathbf{r}_{2}) \left|^{2} \right|^{2} \right],$$

Probability admixture for singlet and triplet states

Correlation function: relative contribution of the singlet and the triplet states in the initial configuration

 $C(\mathbf{p}_1, \mathbf{p}_2) = \frac{P(\mathbf{p}_1, \mathbf{p}_2)}{P(\mathbf{p}_1)P(\mathbf{p}_2)}$

tor for wavefunction detector

$_{2}, \mathbf{r}_{2})$

2,

Spin correlations

Two-body probability density $\mathcal{P}(E_{nn})$ $P(E_{nn}) = \mathcal{P}(E_{nn}) dE_{nn}$

Assuming $r_0 = 4$ fm for the average initial distance of the nn pair right after the NMWD

important than FSI in NMWD

Summary

- Production and fragmentation of hypertriton sensitive to its radius.
- Electromagnetic response of the hypertriton also useful. Maybe will become state-of the art probe in the future.
- Nonmesonic decays of light hypernuclei is the only tractable way to study $\Delta S = 1$ weak baryon-baryon interaction.
- FSI important and can be used to our benefit (scattering lengths, probe of spin correlations, etc).