

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

Study of Ξ and Kaonic nuclear bound states using ¹²C(K⁻, K⁺) and ¹²C(K⁻, p) reaction at J-PARC

Result of J-PARC E05 and E42 experiments SPICE: Strangeness hadrons as a Precision tool for strongly InterCting systEms (ECT* workshop) 2024/05/13-17

Yudai Ichikawa (Tohoku University)

Contents

- ${}^{12}C(K^-, K^+)$ reaction for Ξ hypernucleus (Ξ -A interaction)
 - E05: Inclusive ¹²C(K⁻, K⁺) spectrum (*Paper has been submitted*)
 - E42: Exclusive spectrum by tagging escape Ξ^- and converted $\Lambda\Lambda$ particles \rightarrow Sensitive to imaginary part of Ξ -A interaction
- ¹²C(K⁻, p) reaction for Kaonic nucleus (\overline{K} -A interaction)
 - E05 : Inclusive ¹²C(K⁻, p) spectrum (*Paper is published*)
 - E42: Exclusive spectrum by requiring decay particles to suppress the QF backgrounds

E05 papers

(K⁻, K⁺) paper has been submitted

Prog. Theor. Exp. Phys. 2015, 00000 (13 pages) DOI: 10.1093/ptep/0000000000

Missing-mass measurement of the ${}^{12}C(K^-, K^+)$ reaction at 1.8 GeV/c with the SKS spectrometer

Yudai Ichikawa^{1, 2} Jung Keun Ahn³, Yuya Akazawa⁴, Kanae Aoki⁴, Elena Botta^{5, 6}, Hiroyuki Ekawa⁷, Petr Evtoukhovitch⁸, Alessandro Feliciello⁵, Manami Fujita², Toshiyuki Gogani⁹, Shoichi Hasegawa², Tomoyuki Hasegawa¹⁰, Shuhei Hayakawa¹, Tomonori Hayakawa¹¹, Ryotaro Honda⁴, Kenji Hosomi², Ken'ichi Imai², Wooseung Jung³, Shunsuke Kanatsuki⁹, Shin Hyung Kim¹², Shinji Kinbara¹³, Kazuya Kobayashi¹¹, Jaeyong Lee¹⁴, Simonetta Marcello^{5, 6}, Koji Miwa¹, Taejin Moon¹⁴, Tomofumi Nagae⁹, Yoshiyuki Nakada¹¹, Manami Nakagawa⁷, Takuya Nanamura², Megumi Naruki⁹, Atsushi Sakaguchi¹¹, Hiroyuki Sako², Susumu Sato², Yuki Sasaki¹, Kotaro Shirotori¹⁵, Hitoshi Sugimura¹⁶, Toshiyuki Takahashi³, Hirokazu Tamura^{1, 2}, Kivoshi Tanida², Zviadi Tsamalaidze⁸, Mifuyu Ukai⁴, and Takeshi O. Yamamoto²

¹Department of Physics, Tohoku University, Sendai 980-8578, Japan *E-mail: yudai.ichikawa.d3@tohoku.ac.jp

²Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

³ Department of Physics, Korea University, Scoul 02841, Republic of Korea
 ⁴ High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
 ⁵ INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Torino, I-10125 Torino, Italy
 ⁶ Dipartimento di Fisica, Università di Torino, I-10125 Torino, Italy
 ⁷ RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
 ⁸ Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia
 ⁹ Department of Physics, Kyoto University, Sugamihara 252-0373, Japan

¹¹Department of Physics. Osaka University, Osaka 560-0043, Japan

¹²Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea

 ¹³Physics Department, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
 ¹⁴Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea

¹⁵Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan

¹⁶Accelerator Laboratory, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan

We performed a measurement of the inclusive missing-mass spectrum of the $^{12}C(K^-,K^+)$ reaction at an incident beam momentum of 1.8 GeV/c. This measurement was carried out by using the Superconducting Kaon Spectrometer (SKS) and the K1.8 beamline spectrometer at the Hadron Experimental Facility in J-PARC. Our experimental setup yielded a good energy resolution of 8.2 MeV (FWHM), which allowed us to observe significant enhancements in the proximity of the $\frac{1}{2}$ Be production threshold

(K⁻, p) paper was published in 2020

Prog. Theor. Exp. Phys. 2020, 123D01 (34 pages) DOI: 10.1093/ptep/ptaa139

An event excess observed in the deeply bound region of the ${}^{12}C(K^-, p)$ missing-mass spectrum

Yudai Ichikawa^{1,4}, Junko Yamagata-Sekihara², Jung Keun Ahn³, Yuya Akazawa⁴, Kanae Aoki⁴, Elena Botta^{5,6}, Hiroyuki Ekawa⁷, Petr Evtoukhovitch⁸, Alessandro Feliciello⁵, Manami Fujita¹, Toshiyuki Gogami⁹, Shoichi Hasegawa¹, Tomoyuki Hasegawa¹⁰, Shuhei Hayakawa^{11,1}, Tomonori Hayakawa¹¹, Satoru Hirenzaki¹², Ryotaro Honda⁴, Kenji Hosomi¹, Ken'ichi Imai¹, Wooseung Jung³, Shunsuke Kanatsuki⁹, Shin Hyung Kim³, Shinji Kinbara^{14,1}, Kazuya Kobayashi¹¹, Jaeyong Lee¹⁵, Simonetta Marcello^{5,6}, Koji Miwa¹³, Taejin Moon¹⁵, Tomofumi Nagae⁹, Yoshiyuki Nakada¹¹, Manami Nakagawa⁷, Takuya Nanamura⁹, Megumi Naruki^{9,1}, Atsushi Sakaguch¹¹, Hiroyuki Sako¹, Susumu Sato¹, Yuki Sasaki¹³, Kotaro Shirotori¹⁶, Hitoshi Sugimura¹⁷, Toshiyuki Takahashi⁴, Hirokazu Tamura^{13,1}, Kiyoshi Tanida¹, Zviadi Tsamalaidze⁸, Mifuyu Ukai^{4,13}, and Takeshi O. Yamamoto¹

¹ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan ²Department of Physics, Kyoto Sangyo University, Kyoto 603-8555, Japan ³Department of Physics, Korea University, Seoul 02841, Republic of Korea ⁴Institute of Particle and Nuclear Study (IPNS), High Energy Accelerator Research Organization (KEK). Tsukuba, 305-0801, Japan ⁵INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Torino, I-10125 Torino, Italy ⁶Dipartimento di Fisica, Università di Torino, I-10125 Torino, Italy ⁷RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan ⁸Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia ⁹Department of Physics, Kyoto University, Kyoto 606-8502, Japan ¹⁰Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan ¹¹Department of Physics, Osaka University, Osaka 560-0043, Japan 12 Department of Physics, Nara Women's University, Nara 630-8506, Japan ¹³Department of Physics, Tohoku University, Sendai 980-8578, Japan ¹⁴Physics Department, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan ¹⁵Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea ¹⁶Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan ¹⁷Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan *E-mail: yudai@post.j-parc.jp

Received May 28, 2020; Revised September 8, 2020; Accepted September 8, 2020; Published December 18, 2020

We have measured, for the first time, the inclusive missing-mass spectrum of the ${}^{12}C(K^-, p)$ reaction at an incident kaon momentum of 1.8 GeV/c at the 1-PARC K1.8 beamline. We observed a prominent quasi-elastic peak ($K^- p \to K^- p$) in this spectrum. In the quasi-elastic peak region, the effect of secondary interaction is apparently observed as a peak shift, and the peak exhibits a tail in the bound region. We compared the spectrum with a theoretical calculation based on the Green's function method by assuming different values of the parameters for the \bar{K} -nucleus optical potential. We found that the spectrum shape in the binding-energy region $-300 \text{ MeV} < B_K < 40 \text{ MeV}$ is best reproduced with the potential depths $F_0 = -80 \text{ MeV}$ (real part) and $W_0 = -40 \text{ MeV}$ (imaginary part). On the other hand, we observed a significant event excess in the deeply bound region around $B_K \sim 100 \text{ MeV}$, where the major decay channel of $K^-NN \to \pi \Sigma N$ is energetically closed, and the non-mesonic decay modes ($K^-NN \to \Lambda N$ and ΣN) should mainly contribute. The enhancement is fitted well by a Breit-Wiener function with

Introduction BNL E885 experiment

 $\theta_{K^+} < 14^{\circ}$

ÒF

Resolution:

14 MeV

²⁰–(FWHM)

MeV)

2

(nb/sr

40[

30Ľ

20Ľ

counts / 2 MeV

$$U_B(r) = -V_{0B}f(r) + V_{LSB}(\frac{\hbar}{m_{\pi}c})(\mathbf{l} \cdot \mathbf{s})\frac{1}{r}\frac{df(r)}{dr} + U_{coulomb}(r),$$

 $f(r) = (1 + e^{\frac{r-R}{a}})^{-1},$

 $R = r_0 (A - 1)^{1/3},$ P. Khaustov Doctor thesis

r_0, fm	a, fm	$V_{0\Xi}, MeV$	$V_{LS\Xi}$, MeV	V_{0p}, MeV	V_{LSp}, MeV
1.1	0.65	20, 16	1	72.5	7

Maybe, they did not consider the imaginary part W_0^{Ξ} The width of peaks are considered.

Theoretical study by Kohno

Γ/2 is assumed to be 2 MeV

M. Kohno and S. Hashimoto, PTP 123, 1 (2010).

Recent theoretical study by Harada

T. Harada and Y. Hirabayashi, Phys. Rev. C 103, 024605 (2021).

$$V_0^{\Xi} = -17 \pm 6$$
 MeV (W_0^{Ξ} is difficult to determine
* $W_0^{\Xi} = \underline{W_0(\Xi^- p \rightarrow \Xi^0 n)} + W_0(\Xi^- p \rightarrow \Lambda\Lambda)$

No sensitivity to Imaginary part from the inclusive analysis

J-PARC E05 EXPERIMENT

Experiment	BNL E885	J-PARC E05	J-PARC E70
Resolution FWHM (MeV)	14	8	2
Momentum range (GeV/c)	0.8-1.4	0.8-2.2	1.2-1.5

Elementary cross-section p(K⁻, K⁺)Ξ⁻

¹²C(K⁻, K⁺) spectrum near threshold

Spectrum fitting

Result of spectrum fitting

Function	$\chi^2/ndf \ (ndf)$	<i>P</i> -value	Fitting parameters (MeV)
(a) $QF(\Gamma = 0) + 1Gaus$	1.83 (23)	0.00896	$B_{\Xi} = 7.1 \pm 1.5 \text{ (stat.)} ^{+2.4}_{-6.1} \text{ (syst.)}$
(b) $QF(\Gamma = 0) + 2Gaus$	0.849 (22)	0.665	$B_{\Xi}^{1st} = 8.9 \pm 1.4 \text{ (stat.)} ^{+3.8}_{-3.1} \text{ (syst.)}$
			$B_{\Xi}^{2nd} = -2.4 \pm 1.3 \text{ (stat.)} ^{+2.8}_{-1.2} \text{ (syst.)}$
(c) $QF(\Gamma \neq 0) + 1BW$	0.954(23)	0.524	$B_{\Xi} = -2.7 \pm 2.2 \text{ (stat.)} ^{+0.5}_{-0.7} \text{ (syst.)}$
			$\Gamma = 4.1 \pm 2.1 \text{ (stat.)} ^{+1.2}_{-0.7} \text{ (syst.)}$
(d) $QF(\Gamma = 0)$	2.49(19)	0.000332	
(e) $QF(\Gamma \neq 0)$	1.39(25)	0.0914	$\Gamma = 8.7 \pm 1.1 \text{ (stat.)}$

Comparison between E05(8.2 MeV) and E70(2 MeV)

14

Simulated spectra with E05(8.2 MeV) condition

Simulated spectra with E70(2 MeV) condition

J-PARC E42 experiment

p(K⁻, K⁺) missing-mass analysis with CH2 target

E42 byproduct: Ξ-A potential determination

Exclusive Binding-energy Spectra for E-A Potential Study

Exclusive Binding-energy Spectra for E-A Potential Study

22

(V_0 , W_0) determination from ¹²C(K⁻, p) spectrum

Y. Ichikawa et al., PTEP 2020, 123D01(2020)

¹²C(K⁻, p) spectrum by varying (V_0 , W_0)

Suggestion of Y*-nucleus state

Y. Ichikawa et al., PTEP 2020, 123D01(2020)

E42 Kp Coincidence measurement

Summary

- ${}^{12}C(K^-, K^+)$ reaction to study Ξ -hypernucleus and Ξ -A interaction
 - E05 (K⁻, K⁺) paper has been submitted.
 - We showed the wide energy-range spectrum (Carbon graphite target).
 - We have performed spectrum fitting around the threshold region.
 - (b) $QF(\Gamma=0) + 2Gaus$ and (c) $QF(\Gamma\neq 0) + 1BW$ are likely.
 - The peak structures will be prominent with E70's resolution, 2MeV.
 - E42 can decompose the inclusive spectrum to escape and conversion one. \rightarrow Good sensitivity to determine the W₀^Ξ.
- 12C(K⁻, p) reaction to study \overline{K} -A interaction
 - $(V_0, W_0) = (-80, -40)$ MeV, shallow potential, well reproduced the spectrum.
 - We found the significant event excess (Y*-nucleus state?), around $B_{K} \sim 100$ MeV.
 - E42 exclusive study will conclude the existence of event excess.

Back up

Introduction

• H-dibaryon: Six-quark state consisting of *uuddss* quarks due to color magnetic force.

• History of H-dibaryon search

1977	 Deeply-bound di-hyperon predicted by R. Jaffe
1980-2000	No evidence for the deeply-bound <i>H</i> from KEK, BNL,
•	and CERN experimental efforts by more than 80 MeV
2001	• Mass constraint from observation of $^{6}_{\Lambda\Lambda}$ He (E373)
1998,2007	Enhanced $\Lambda\Lambda$ production near threshold was
•	reported from E224 and E522 at KEK-PS.
2011	• LQCD calculations predict the H-dibaryon near $m_{\Lambda\Lambda}$
2013-2015	No evidence for $H \to \Lambda p \pi^-$ and $H \to \Lambda \Lambda$
•	in high-energy e^+e^- , pp and AA experiments
2021	 LQCD calculations point to the mass the H-dibaryon
•	very close to ΞN threshold ($m_{\pi} \approx 146$ MeV)
2021	J-PARC E42 has successfully completed with HypTPC.

Analysis of KURAMA spectrometer for the forward scattered particles

$p(K^{-}, K^{+})$ missing-mass analysis with CH2 target

p2

1.35

1.4

Counts [/2 MeV/2] 2200 Counts [/2 MeV/2] 2200 Counts [/2 MeV/2]

50

1.2

	Inclusive	Coin with ∃ [.]	Coin with Λ
Yield (C(QF) + H)	4022 events	1076 events	1770 events
Yield (H)	1591 events	556 events	742 events
Coincidence Prob. (H)		0.34 (CoinΞ ⁻ / Inclusive)	0.47 (CoinΛ / Inclusive)
Br×Acceptance (Ξ→Λπ ⁻ , Λ→pπ ⁻)		0.64×0.87 =0.56	0.64×0.92 =0.59

p(K⁻, K⁺) inclusive

ΛΛ reconstruction using HypTPC

3,000 AA events are reconstructed with 46% E42 data \rightarrow 6,600 $\Lambda\Lambda$ events with 100% data

Summary of past experiments

	KEK E224	KEK E522
Beam K ⁻	p_(K ⁻) = 1.65 GeV/c	p_(K ⁻) = 1.66 GeV/c
p_(K⁺) [GeV/c]	0.95 <p_(k<sup>+) <1.3</p_(k<sup>	0.9 <p_(k⁺) <1.3<="" td=""></p_(k⁺)>
$d\sigma/d\Omega^c$ (AA)	7.6 µb/sr	12.8 µb/sr
$\Lambda\Lambda$ yield	35 events	68 events

E42 used p_(K⁻) = 1.8 GeV/c beam

Considering 1.5 times larger cross section of Ξ^{-} production

Comparison with expected yield

p_(K+) [GeV/c]	0.95 <p_(k<sup>+) <1.3</p_(k<sup>		0.5 < p_(K ⁺)		
Assumed $d\sigma/d\Omega^{C}(\Lambda\Lambda)$	7.6 µb/sr	12.8 µb/sr			
Expected $\Lambda\Lambda$ yield	337 events	570 events			
Expected scaled $\Lambda\Lambda$ yield	520 events	880 events			
Measured $\Lambda\Lambda$ yield 1,390 events 3,030 events					
Measured AA yield is larger than the expectation					

Other physics topics of E42

4 Ph.D. students are analyzing the E42 data

Wooseung (Korea Univ.) • Ξ--nucleus interaction study (close relation with H-dibaryon)

• E42 is sensitive for the W_0 (imaginary part) determination

Byungmin (Korea Univ.) • dσ/dΩ and P_{Ξ} measurement of K⁻ p \rightarrow K⁺ Ξ⁻/ Ξ⁻(1535) reaction

Sungwook (Korea Univ.) • $d\sigma/d\Omega$ measurement of p(K⁻, p)K*(892) and ¹²C(K⁻, p)K*(892)X

F. Oura (Tohoku Univ.) • Kaonic nuclear search by ¹²C(K⁻, p) reaction

H-dibaryon box will be opened after we perfectly confirm the analysis

Experiments related to Ξ -A interaction study

Ξ-A potential:

$$U_{\Xi}(r) = V_{\Xi}(r) + iW_{\Xi}(E, r)$$
$$= \left[V_0^{\Xi} + iW_0^{\Xi}g(E)\right]f(r)$$

 V_0^{Ξ} (Re): Interaction strength of Ξ-A W_0^{Ξ} (Im): Absorption strength $(\Xi^-p \rightarrow \Lambda\Lambda, \Xi^-p \rightarrow \Xi^0 n)$

BNL E885

J-PARC E05/E70 ¹²C(K⁻, K⁺) inclusive spectrum

with wide B_{Ξ} range is taken.

The 36th J-PARC PAC presentation

Best resolution 2 MeV will be achieved in E70

T. Gogami et al., EPJ Web Conf. 271, 1102 (2022).

P. Khaustov et al., PRC 61, 054603 (2000)

Experiments related to Ξ -A interaction study

Ξ-A potential:

 $U_{\Xi}(r) = V_{\Xi}(r) + iW_{\Xi}(E, r)$ $= \left[V_0^{\Xi} + iW_0^{\Xi}g(E)\right]f(r)$ $V_0^{\Xi}(\text{Re}): \text{ Interaction strength of }\Xi-A$ $W_0^{\Xi}(\text{Im}): \text{ Absorption strength}$ $(\Xi^-p \to \Lambda\Lambda, \Xi^-p \to \Xi^0N)$

Reinvestigation using old BNL-E906 data by Harada and Hirabayashi

 $V_0^{\pm} = -17 \pm 6 \text{ MeV}$ W_0^{Ξ} is difficult to determine by the inclusive spectrum. $V_0^{\Xi} = -24 \text{MeV}$ [EXP.] σ_{1.5}°-8.5° 0.3 ⁹Be(K⁻,K⁺) -2 40-12 $\Delta \chi^2 = 2.30$ 1.8GeV/c 0.3 $\bar{\sigma}_{1.5^\circ-8.5^\circ}$ ($\mu b/sr \text{ MeVc}^{-1}$) $\dot{\sigma}$ $(f_s = 0.940)$ (µb/sr MeVc⁻¹) [CAL. W_0^{Ξ} (MeV) 30 χ^2_{min} +120.2 $\Delta \chi^2 = 4.61$ 20-6 0.1 $\Delta \chi^2 = 9.21$ -8 10 $W_0^{\Xi} = -5 MeV$ 0.0 -100.0 -30 -20 -101.3 0 1.0 1.2 10 1.1 1.4 p_{K^*} (GeV/c) V_0^{Ξ} (MeV)

T. Harada and Y. Hirabayashi, Phys. Rev. C 103, 024605 (2021).

Summary

- We have updated analysis code to improve the tracking efficiency and resolutions.
- Ξ^- and Λ reconstruction efficiency is improved and it is checked by the CH₂ target data analysis.
- 3,000 ΛΛ events are reconstructed using 46% dataset. Reconstructed ΛΛ yield is larger than the expectation.
 6,600 ΛΛ events are expected with 100% dataset.
- We show preliminary result of the byproduct to study the Ξ -A interaction. We can decompose the inclusive ${}^{12}C(K^-, K^+)$ spectrum to Ξ^- escape and $\Xi^-p \rightarrow \Lambda\Lambda$ conversion spectra. E42 is sensitive for the W_0^{Ξ} determination.
- We hope to open the H-dibaryon box soon.

Sensitivity of E42 experiment

Missing mass [GeV/c²]

Preliminary Λ / Ξ^- reconstruction via the $CH_2(K^-, K^+)X$ reaction

K⁺ Momentum Spectrum with Exclusive Processes

Parameters	PAC	E42			
Beam power	60 kW	64 kW			
K^- beam (M/h) (F_{K^-})	415				
Accelerator operation ($\varepsilon_{\rm acc}$)	90%	92%			
Physics run (day)	29	27			
Number of K^- particles	$3.19 imes 10^{11}$	$1.8 imes 10^{11}$			
Target size R_{target}	0.95	0.80			
Number of nuclei (N_{target})	$3.53\times10^{23}/\mathrm{cm}^2$	$3.27\times 10^{23}/\mathrm{cm}^2$			
Density (ρ)	$3.515~{ m g/cm^3}$	$3.223 \mathrm{~g/cm^3}$		KEK-E224[43]	KEK-E522[44]
$d\sigma/d\Omega^C_L(\Lambda\Lambda)$	$7.6~\mu{ m b/sr}$	$10 \ \mu { m b/sr}$	$p_{K^-}({ m GeV}/c)$	1.65	1.66
$\Delta\Omega(K^+)$	0.0	9 sr	$d\sigma/d\Omega_L^C(\Lambda\Lambda)$ $p_{K\pm}(\text{GeV}/c)$	$7.6 \ \mu b/sr$ $0.95 < p_{K+} < 1.3$	$12.8 \ \mu b/sr$ $0.90 < p_{V+} < 1.3$
${ m Br}(\Lambda o p\pi^-)^2$	0.	41	<i>P</i> K +(001)0)	$0.00 < PK^+ < 1.0$	$0.00 < p_{K^+} < 1.0$
K^+ decay	0.	63			
$\Lambda\Lambda$ reconstruction	0.	45			
$\varepsilon_{\rm DAQ} \cdot \varepsilon_{\rm offline}$	80% = 9	5%.85%			
Event rate (event/h)	7.9				
$\Lambda\Lambda$ Yield (events)	6200	4500			

J-PARC E42

1.82

 $10 \ \mu b/sr$

 $0.50 < p_{K^+}$

43

Table 5.2: Yield estimates for $\Lambda\Lambda$ production events.

Expected Yield and Reconstructed $\Lambda\Lambda$ Production Events

*SH Kim's thesis

Table 5.2: Yield estimates for $\Lambda\Lambda$ production events.

Parameters	PAC	E42
Beam power	60 kW	64 kW
K^- beam (M/h) (F_{K^-})	415	
Accelerator operation ($\varepsilon_{\rm acc}$)	90%	92%
Physics run (day)	29	27
Number of K^- particles	$3.19 imes 10^{11}$	$1.8 imes10^{11}$
Target size R_{target}	0.95	0.80
Number of nuclei (N_{target})	$3.53 imes10^{23}/\mathrm{cm^2}$	$3.27\times 10^{23}/\mathrm{cm}^2$
Density (ρ)	$3.515~{ m g/cm^3}$	3.223 g/cm^3
$d\sigma/d\Omega^C_L(\Lambda\Lambda)$	$7.6~\mu\mathrm{b/sr}$	$10 \ \mu { m b/sr}$
$\Delta\Omega(K^+)$	0.0	9 sr
${\rm Br}(\Lambda \to p \pi^-)^2$	0.41	
K^+ decay	0.63	
$\Lambda\Lambda$ reconstruction	0.45	
$\varepsilon_{\mathrm{DAQ}} \cdot \varepsilon_{\mathrm{offline}}$	$80\%\!=95\%\!\cdot\!\!85\%$	
Event rate (event/h)	7.9	
$\Lambda\Lambda$ Yield (events)	6200	4500

K- decay : 0.96

	KEK-E224[43]	KEK-E522[44]	J-PARC E42
$p_{K^-}({\rm GeV}/c)$	1.65	1.66	1.82
$d\sigma/d\Omega^C_L(\Lambda\Lambda)$	$7.6 \ \mu b/sr$	12.8 $\mu b/sr$	$10 \ \mu \mathrm{b/sr}$
$p_{K^+}(\text{GeV}/c)$	$0.95 < p_{K^+} < 1.3$	$0.90 < p_{K^+} < 1.3$	$0.50 < p_{K^+}$

P_{K^+} (GeV/c)	$0.5 < P_{K^+}$	$0.95 < P_{K^+} < 1.3$	$0.5 < P_{K^+}$	$0.5 < P_{K^+}$
Number of K ⁻	1.8×10^{11}	0.46×10^{11}	1.8×10^{11}	1.8×10^{11}
$d\sigma/d\Omega^C_L(\Lambda\Lambda)$		7.6 <i>µb/sr</i>	7.6 µb/sr	12.8 µb/sr
(expcectd) $\Lambda\Lambda$ Yield		750	2900	4900
(expcected) Scaled $\Lambda\Lambda$	Yield	1100	4450	7500
(Measured) $\Lambda\Lambda$ Yield	8200	2800	8200	8200

$0.46 \times 10^{11} = (1.8 \times 10^{11}) \times (99/(289 + 99))$

E42

The cross section for ¹²C(K⁻, K⁺) reactions at 1.65 GeV/c (KEK-E176)

 $0.95 < P_k + < 1.3 \text{ GeV/c} : 99 \pm 4 \mu \text{b/s}$

 $0.5 < P_k + < 0.95 \text{ GeV/c}$: 289 ± 12 µb/sr

1.65 -> 1.8 GeV/c scaling factor : 54/35

The Ξ^- production cross section

 $\langle d\sigma/d\Omega \rangle$ (K⁻p \rightarrow K⁺ Ξ^- = 54 µb/sr) at 1.8 GeV/c

 $\langle d\sigma/d\Omega \rangle = 35 \ \mu b/sr at 1.65 \ GeV/c$

