Lambda(1405) in the flavor SU(3) limit from lattice QCD

Kotaro Murakami

Tokyo Institute of Technology/RIKEN iTHEMS (HAL QCD Collaboration)

K. M. and S. Aoki, "Study on Lambda(1405) in the flavor SU(3) limit in the HAL QCD method," PoS LATTICE2023, 063 (2024) [arXiv:2311.17421[hep-lat]]

based on

SPICE: Strange hadrons as a Precision tool for strongly InteraCting systEms @ECT*, May13, 2024

Introduction

- ultimate goal: understand the exotic hadrons from lattice QCD
- key: hadron scatterings (interactions)

 $P_{c}(4440)^{+}$

(Time-dependent) HAL QCD method

• R-correlator:

$$R(\mathbf{r},t) = \frac{\langle O_1(\mathbf{r},t)O_2(\mathbf{0},t)\bar{J}(t)\bar{J}$$

time-dependent equation

$$d^{3}r' \ U(\mathbf{r}, \mathbf{r}') R(\mathbf{r}', t) \simeq \left(\bigwedge_{k=1}^{N} \mathbb{E}\left(\mathbf{r}' \right) \delta^{(3)}(\mathbf{r} - \mathbf{r}') \right)$$

[Ishii, Aoki, Hatsuda 2007] [lshii et al. 2011] $\frac{\langle 0 \rangle}{\bar{\mathcal{D}}_2(0) \rangle} \approx \sum_n C_{\bar{J},n} \Psi^{W_n}(\mathbf{r}) e^{-(W_n - m_1 + m_2)t}$ Nambu-Bethe-Salpeter (NBS) wave function (µ: reduced mass) $\left(\frac{\nabla^2}{2\mu} - \frac{\partial}{\partial t} + \frac{1}{8\mu}\frac{\partial^2}{\partial t^2}\right)R(\mathbf{r},t)$ e.g. NN potential 30 (leading-order (LO) approximation) 20 V_C(r) [MeV] 10 $\neg \frac{1}{8\mu} \frac{1}{\partial t^2} R(\mathbf{r}, t)$ -10 -20 -30 -40 0.5 1.5

$$\blacktriangleright V(\mathbf{r}) \simeq \frac{1}{R(\mathbf{r},t)} \left(\frac{\nabla^2}{2\mu} - \frac{\partial}{\partial t}\right)$$

3

r [fm]

0

HAL QCD Collaborations

- Hadrons to Atomic nuclei from Lattice QCD (HAL QCD) Collaboration
- Members
 - S. Aoki, E. Itou (YITP, Kyoto Univ., Japan)

T. Doi, T. Hatsuda, L. Wang, Y. Lyu, W. Yamada (RIKEN iTHEMS, Japan)

N. Ishii, P. Junnarkar, K. Murano, H. Nemur (RCNP, Japan)

- Y. Ikeda, K. Sasaki (CiDER, Osaka Univ., Japa
- **T. Inoue** (Nihon Univ., Japan)
- **T. Sugiura** (Rissho Univ., Japan)
- K. Murase (Tokyo Metropolitan University, Ja

T. Aoyama (ISSP, Tokyo Univ., Jap	an)
ra T. M. Doi (Kyoto Univ., Japan)	
K. Murakami (TlTech, Japan)	
F. Etminan (Univ. of Birjand, Iran)	
H. Tong (Univ. of Bonn, Germany)	
apan)	

Quark pair annihilations

- two types of exotic hadrons: with and without quark pair annihilations
 - w/o quark pair annihilations: $QQ\bar{q}\bar{q}, Q\bar{Q}q\bar{q}'*, Q\bar{Q}qqq*, q\bar{q}'qqq$ T_{cc} Z P_c Θ^+

situation is much different

* neglect $Q\bar{Q}$ annihilation

• w/ quark pair annihilations: resonances, $Q\bar{Q}q\bar{q}$, $q\bar{q}q\bar{q}$, $q\bar{q}qqq$ $X = f_0/\sigma \Lambda(1405)$

• w/ quark pair annihilations: much more computational cost in lattice QCD

- Θ⁺(1540) [lkeda, 2011(PoS)] [**KM**, Akahoshi, Aoki, 2020] [T. Aoki, S. Aoki, Inoue, 2023]
 - $\Omega_{ccc}\Omega_{ccc}$ dibaryon [Lyu et al., 2021]
 - T_{cc}^+ tetraquark
 - [Lyu et al., 2023] • $N\phi$ + femtoscopy [Lyu et al., 2022]
 - [Chizzali et al., 2022]

(hadron interactions: on-going)

Exotic hadrons w/ quark pair annihilations

 hadron resonances/most of exotic hadrons: quark-pair annihilation diagrams appear

computational cost is very high

 new technique to suppress the cost allowed such calculation in HAL QCD method [Akahoshi, Aoki, Doi, 2021]

[Akahoshi, Aoki, Doi, 2021]

next step: exotic hadrons (Λ(1405) etc.)

 $\times O(L^4)$ larger

$\Lambda(1405)$

- $\Lambda(1405)$: not a simple Λ baryon
- one pole? two poles? chiral unitary model [Oller and Meissner, 2001] lattice QCD using finite-volume method at $m_{\pi} \approx 200 \text{ MeV}$ [Bulava et al. (BaSc Collab.), 2024] virtual state below $\pi\Sigma$ + resonance below $\bar{K}N$
- this talk: study from HAL QCD approach

$\Lambda(1405)$ in flavor SU(3) limit

• $\Lambda(1405)$ in flavor SU(3) limit $m_u = m_d = m_s$

 previous study in the chiral unitary model **Physical point** SU(3) limit goal in this work

(Jido et al., Nucl. Phys. A 725 (2003), 181-200)

understand the mechanism to generate these poles via the HAL QCD potential

Setups

- channels: $8 \otimes 8 = 27 \oplus 10 \oplus 10^* \oplus 8_s \oplus 8_a \oplus 1$ meson baryon
- S-wave analysis
- LO approximation in the HAL QCD potential $U(\mathbf{r},\mathbf{r}') \approx V(\mathbf{r})\delta^{(3)}(\mathbf{r}-\mathbf{r}')$
- neglect 8, and 8, coupling in this work $\begin{pmatrix} V_{8_{s}8_{s}}(r) & V_{8_{s}8_{a}}(r) \\ V_{8_{s}8_{s}}(r) & V_{8_{s}8_{a}}(r) \end{pmatrix} \approx \begin{pmatrix} V_{8_{s}8_{s}}(r) & 0 \\ 0 & V_{8_{s}8_{s}}(r) \end{pmatrix} \quad \text{w/ WT interaction:}$

725 (2003), 181-200)

cf. chiral perturbation theory

- no coupling between 8_s and 8_a
- interactions for 8_s and 8_a are the same

Lattice setups

• $a \approx 0.12$ fm, 32^4 lattices, $m_M \approx 670$ MeV (cf. $m_M = 368$ MeV, $m_B = 1151$ MeV in chiral unitary) $m_B \approx 1489 \text{ MeV}$

• R·

-correlators
$$(\operatorname{rep} = 1, 8_s, 8_a)$$
$$R^{(\operatorname{rep})}(\mathbf{r}, t) = \frac{\langle (M(\mathbf{r}, t)B(\mathbf{0}, t))_{(\operatorname{rep})}\overline{\Lambda}(0) \rangle}{\langle M(t)\overline{M}(0) \rangle \langle B(t)\overline{B}(0) \rangle} \sim \sum_{\mathbf{z}} \frac{\overline{u}(\mathbf{z})\overline{d}(\mathbf{z})\overline{s}(\mathbf{z})}{\operatorname{s}\operatorname{quark type}}$$
$$(octet, singlet)$$

• one bound state in each channel from $\langle \Lambda(t)\Lambda(0) \rangle$:

•
$$m_M + m_B - m_{\text{bound}}^{(\text{octet})} = 156(8)_{\text{st}}$$

• $m_M + m_B - m_{\text{bound}}^{(\text{singlet})} = 227(5)_{\text{stat}} \text{ MeV}$

tat MeV

LO potentials

singular behavior because of the R-correlators crossing zero

no problem in principle, but difficult to obtain reliable results... 12

Utilizing the two octet R-correlators

- assume 8_s and 8_a are degenerated in this work
- \blacktriangleright $R^{(8_s)}(\mathbf{r},t)$, $R^{(8_a)}(\mathbf{r},t)$: different potentials, but produce the same scattering amplitude

 \blacktriangleright same situation for $R^{(8_{\min})}(\mathbf{r},t) = R^{(8_s)}(\mathbf{r},t)$ $R^{(8_s)}(\mathbf{r},t)$ $R^{(8_a)}(\mathbf{r},t)$ $R^{(8_{\text{mix}})}(\mathbf{r},t) \equiv R^{(8_s)}(\mathbf{r},t) - cR^{(8_a)}(\mathbf{r},t)$

• c is set such that $R^{(8_{\min})}(\mathbf{r},t)$ does not cross zero

cf. chiral perturbation theory w/WT interaction: • no coupling between 8_s and 8_a • interactions for 8_s and 8_a are the same

$$^{(s)}(\mathbf{r},t) - cR^{(8_a)}(\mathbf{r},t)$$
 at any c

• the shape drastically changes for different c physical observables? 14

• attractive for all c

Binding energy in octet channel

- solve Schrödinger equation
- \blacksquare binding energy for each c

$$\blacktriangleright E_{\rm bind}^{\rm (octet)} = 163(7)_{\rm st}$$

- consistent with the value from $\langle \Lambda_{octet}(t) \overline{\Lambda}_{octet}(0) \rangle$ (156(8)_{stat} MeV) **—** our analysis (and assumption) is more or less reliable
- systematic error possibly comes from: $\begin{cases} \text{ effect of the coupling } 8_s, 8_a \\ \text{ difference between } 8_s, 8_a \\ \text{ non-locality effect} \end{cases}$

)	0.3	0.4	0.6	0.8
5)	177(5)	163(7)	132(13)	99(15)

Summary

- $_{\rm \bullet}$ we study $\Lambda(1405)$ in flavor SU(3) limit from the meson-baryon scatterings using the HAL QCD method
- R-correlator in each irrep. have zero point, producing potential with singular point
- we utilize the mixed R-correlators in the **octet channel** to obtain the non-singular potential
- the potentials from different mixed R-correlators change the shapes, but give similar binding energies

Future work

- the singular behavior is due to the zeros of the 3-point functions (wave functions)
- such behavior does not happen in the usual QM

the singular behavior: effects beyond QM (QFT)

• Future work: use **separable potential** instead of the local one to avoid the singular behavior

$$U(\mathbf{r},\mathbf{r}')\simeq$$

non-locality in the HAL QCD method

$$gv(\mathbf{r})v(\mathbf{r'})$$