

SPICE: STRANGE HADRONS AS A PRECISION TOOL FOR STRONGLY INTERACTING SYSTEMS

May 13-17, 2024 @ Trento

$\bar{K}N$ interaction and $\Lambda(1405)$ in a renormalizable framework of Chiral EFT

Xiu-Lei Ren (任修磊)

2024.05.13

Introduction

Theoretical framework

Results and discussion

Summary

$\bar{K}N$ interaction

$\Box \bar{K}N$ interaction is strongly attractive (I=0)

• **Exotic** $\Lambda(1405)$ resonance $\rightarrow \overline{K}N$ amplitude in free space

• New form of nuclei/atoms: $\bar{K}NN$, $\bar{K}NNN$, multi- \bar{K} N/A J-PARC, DADNE, GSI...

Details can be seen in today's talks

Kaon-condensate could change EoS of neutron star

Play an important role in the strangeness nuclear physics

$\Lambda(1405)$ resonance

 \square $\Lambda(1405)$ state is an exotic candidate

Variety of theoretical studies

- Chiral SU(3) quark model F. Huang, PRC2007...
- QCD sum rules L.S. Kisslinger, EPJA2011...
- Phenomenological potential model A. Cieplý, NPA2015...
- Skyrme model T. Ezoe, PRD2020...
- Hamiltonian effective field theory Z.-W. Liu, PRD2017...
- Chiral unitary approach N.Kaiser, NPA1995; E.Oset, NPA1998; J.A.Oller&U.-G.Meißner, PLB2001...

Structure of $\Lambda(1405)$ resonance

Double-pole predicted by chiral unitary approach

✓ Pole 1: Λ(1405) is around 1420 MeV

✓ Pole 2: Λ(1380) needs further studies to fix its position

Double-pole structure verified by LQCD

 $m_{\pi} \approx 200 \text{ MeV}, m_K \approx 487 \text{ MeV}$

Lower Pole : $E_1 = 1392(9)_{stat}(2)_{model}(16)_a$ MeV Higher Pole : $E_2 = 1455(13)_{stat}(2)_{model}(17)_a$ $-i11.5(4.4)_{stat}(4.0)_{model}(0.1)_a$ MeV

Baryon Scattering Coll., PRL132(2024)051901

Chiral Unitary approach

Chiral symmetry of low-energy QCD + Unitary Relation

J.A.Oller et al., PPNP45(2000)157-242; T.Hyodo et al., PPNP120 (2021)103868 ...

- \square Interaction kernel V: calculate in ChPT order by order
 - Leading, next-to-leading order, ...

Scattering *T*-matrix: solve scattering equations

Lippmann-Schwinge equation or Bethe-Salpeter equation

$$T(p',p) = V(p',p) + i \int \frac{d^4 k}{(2\pi)^4} V(p',k) G(k) T(k,p)$$

Chiral Unitary approach

Chiral symmetry of low-energy QCD + Unitary Relation

J.A.Oller et al., PPNP45(2000)157-242; T.Hyodo et al., PPNP120 (2021)103868 ...

- \square Interaction kernel V: calculate in ChPT order by order
 - Leading, next-to-leading order, ...

Scattering *T*-matrix: solve scattering equations

Lippmann-Schwinge equation or Bethe-Salpeter equation

$$T(p',p) = V(p',p) + i \int \frac{d^4k}{(2\pi)^4} V(p',k) G(k) T(k,p)$$
- On-shell factorization $\rightarrow V(p',p) + V(p',p)$ $\left(i \int \frac{d^4k}{(2\pi)^4} G(k)\right) T(p',p)$
Neglecting off-shell effect

 \rightarrow cause troubles in the study of three-body interaction?

Chiral Unitary approach

Chiral symmetry of low-energy QCD + Unitary Relation

J.A.Oller et al., PPNP45(2000)157-242; T.Hyodo et al., PPNP120 (2021)103868 ...

- □ Interaction kernel V: calculate in ChPT order by order
 - Leading, next-to-leading order, ...

Scattering *T*-matrix: solve scattering equations

Lippmann-Schwinge equation or Bethe-Salpeter equation

$$T(p',p) = V(p',p) + i \int \frac{d^4k}{(2\pi)^4} V(p',k) G(k) T(k,p)$$

- On-shell factorization $\rightarrow V(p',p) + V(p',p) \left(i \int \frac{a}{(2\pi)^4} G(k) \right) T(p',p)$

Neglecting off-shell effect

- → cause troubles in the study of three-body interaction?
- Finite cutoff or subtraction constant to renormalize the loop integral

 $G^{R}(E,\Lambda)$ or $G^{R}(E,\alpha_{i})$ Cutoff / Model dependence

In this work

- Facing the rapid progress of precision experiments, a modelindependent formalism would be needed ALICE, AMADEUS, J-PARC, STAR...
- We propose a renormalizable framework of Chiral EFT for meson-baryon scattering
 - Apply to the SU(2) sector: pion-nucleon scattering XLR, E. Epelbaum, J. Gegelia and U.-G. Meißner, Eur. Phys. J. C80 (2020) 406
 - Extend to the SU(3) sector: $\overline{K}N$ scattering and $\Lambda(1405)$ state XLR, E. Epelbaum, J. Gegelia and U.-G. Meißner, Eur. Phys. J. C81 (2021) 582
 - Investigate the light-quark mass dependence of $\Lambda(1405)$ XLR, arXiv: <u>2404.02720</u> [hep-ph]
 - Next-to-leading order studies

XLR, et al., In progress

Theoretical framework

Time-ordered perturbation theory

Definition

S. Weinberg, Phys.Rev.150(1966)1313 G.F. Sterman, "An introduction to quantum field theory", Cambridge (1993)

+

- Re-express the Feynman integral in a form that makes the connection with on-mass-shell (off-energy shell) state explicit.
 - ✓ Instead the propagators for internal lines as the energy denominators for intermediate states
- TOPT or old-fashioned perturbation theory
- Advantages
 - Explicitly show the unitarity
 - Easily to tell the contributions of a particular diagram
- Obtain the rules for time-ordered diagrams
 - Perform Feynman integrations over the zeroth components of the loop momenta
 - Decompose Feynman diagram into sums of time-ordered diagrams
 - Match to the rules of time-ordered diagrams

Diagrammatic rules in TOPT

External lines

XLR, PoS(CD2021)007

Spin 1/2 fermion (in, out)

Internal lines

Spin 0 (anti-)boson

Spin 1/2 fermion

anti-fermion

Intermediate state

A set of lines between two vertices

$$u(\mathbf{p}), \quad \bar{u}(\mathbf{p}')$$

1

 $\frac{1}{2\epsilon_q} \qquad \epsilon_q \equiv \sqrt{\mathbf{q}^2 + M^2}$ $\frac{m}{\omega_p} \sum u(\mathbf{p})\bar{u}(\mathbf{p}) \qquad \omega_p \equiv \sqrt{\mathbf{p}^2 + m^2}$ $\frac{m}{\omega_p} \sum u(\mathbf{p})\bar{u}(\mathbf{p}) - \gamma_0$

$$\frac{1}{E - \sum_{i} \omega_{p_i} - \sum_{j} \epsilon_{q_j} + i\epsilon}$$

✓ particle $p^0 → \omega(p,m)$ ✓ antiparticle $p^0 → -\omega(p,m)$

- Interaction vertices: the standard Feynman rules
 - Take care of zeroth components of integration momenta

Meson-baryon scattering in TOPT

 $\hfill\square$ Interaction kernel / potential V

- Define: sum up the one-meson and one-baryon irreducible diagrams
- Power counting: Q/Λ_{γ} systematic ordering of all graphs

Scattering equation

$$T = V + V G T$$

Coupled-channel integral equation for T-matrix

$$T_{M_j B_j, M_i B_i}(\boldsymbol{p}', \boldsymbol{p}; E) = V_{M_j B_j, M_i B_i}(\boldsymbol{p}', \boldsymbol{p}; E) + \sum_{MB} \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} V_{M_j B_j, MB}(\boldsymbol{p}', \boldsymbol{k}; E) G_{MB}(E) T_{MB, M_i B_i}(\boldsymbol{k}, \boldsymbol{p}; E)$$

Meson-baryon Green function in TOPT

$$G_{MB}(E) = \frac{m}{2\omega(k,M)\,\omega(k,m)} \frac{1}{E - \omega(k,M) - \omega(k,m) + i\epsilon}$$

Meson-baryon scattering in TOPT

 $\hfill\square$ Interaction kernel / potential V

- Define: sum up the one-meson and one-baryon irreducible diagrams
- Power counting: Q/Λ_{γ} systematic ordering of all graphs

Scattering equation

$$T = V + V G T$$

Coupled-channel integral equation for T-matrix

$$T_{M_j B_j, M_i B_i}(\boldsymbol{p}', \boldsymbol{p}; E) = V_{M_j B_j, M_i B_i}(\boldsymbol{p}', \boldsymbol{p}; E) + \sum_{MB} \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} V_{M_j B_j, MB}(\boldsymbol{p}', \boldsymbol{k}; E) G_{MB}(E) T_{MB, M_i B_i}(\boldsymbol{k}, \boldsymbol{p}; E)$$

Meson-baryon Green function in TOPT

$$G_{MB}(E) = \frac{m}{2\omega(k,M)\,\omega(k,m)} \frac{1}{E - \omega(k,M) - \omega(k,m) + i\epsilon}$$

Potential and scattering equation are obtained on an equal footing!

Leading order studies

XLR, E. Epelbaum, J. Gegelia and U.-G. Meißner, Eur. Phys. J. C80 (2020) 406; Eur. Phys. J. C81 (2021) 582

Leading order potential

Chiral effective Lagrangian

$$\mathcal{L}_{\rm LO} = \frac{F_0^2}{4} \left\langle u_{\mu} u^{\mu} + \chi_+ \right\rangle + \left\langle \bar{B} \left(i \gamma_{\mu} \partial^{\mu} - m \right) B \right\rangle + \frac{D/F}{2} \left\langle \bar{B} \gamma_{\mu} \gamma_5 [u^{\mu}, B]_{\pm} \right\rangle - \frac{1}{4} \left\langle V_{\mu\nu} V^{\mu\nu} - 2 \mathring{M}_V^2 \left(V_{\mu} - \frac{i}{g} \Gamma_{\mu} \right) \left(V^{\mu} - \frac{i}{g} \Gamma^{\mu} \right) \right\rangle + g \left\langle \bar{B} \gamma_{\mu} [V^{\mu}, B] \right\rangle$$

Time ordered diagrams

Vector mesons included as explicit degrees of freedom

✓ One-vector meson exchange potential instead of the Weinberg-Tomozawa term

✓ Improve the ultraviolet behaviour without changing the low-energy physics

LO potential in TOPT

• Dirac spinor is decomposed as $u_B(p,s) = u_0 + [u(p) - u_0] \equiv (1,0)^{\dagger} \chi_s + \text{high order}$

Ultraviolet Behavior

 \Box One-loop integral VGV

$$I_{VGV} = \int \frac{d^3k}{(2\pi)^3} V(p',k) G(k) V(k,p) \begin{cases} V = V_{\text{VME}}, & I_{VGV} \xrightarrow{k \to \infty} \int d^3k \, \frac{1}{k} \, \frac{1}{k^3} \, \frac{1}{k} \\ V = V_{\text{WT}}, & I_{VGV} \xrightarrow{k \to \infty} \int d^3k \, k \, \frac{1}{k^3} \, k \end{cases}$$

Scattering amplitude from the VME potential is cutoff independent !

 $T_{\rm VME} = V_{\rm VME} + V_{\rm VME} G T_{\rm VME}$ Renormalizable

Ultraviolet Behavior

 \square One-loop integral VGV

$$I_{VGV} = \int \frac{d^3k}{(2\pi)^3} V(p',k) G(k) V(k,p) \begin{cases} V = V_{\text{VME}}, & I_{VGV} \xrightarrow{k \to \infty} \int d^3k \, \frac{1}{k} \, \frac{1}{k^3} \, \frac{1}{k} \\ V = V_{\text{WT}}, & I_{VGV} \xrightarrow{k \to \infty} \int d^3k \, k \, \frac{1}{k^3} \, \frac{1}{k} \end{cases}$$

Scattering amplitude from the VME potential is cutoff independent !

$$T_{\rm VME} = V_{\rm VME} + V_{\rm VME} G T_{\rm VME}$$
 Renormalizabl

Iteration of the crossed-Born term is also renormalizable

$$\underbrace{\overset{\mathbf{k}}{\checkmark}}_{k} \underbrace{\overset{\mathbf{k}}{\checkmark}}_{k} \underbrace{\overset{\mathbf{\sigma}}{\sim} \mathbf{p}' \, \boldsymbol{\sigma} \cdot \hat{\mathbf{k}}}_{k} \frac{1}{k^{3}} \frac{\boldsymbol{\sigma} \cdot \mathbf{p} \, \boldsymbol{\sigma} \cdot \hat{\mathbf{k}}}{k}$$

Only divergence is from the iteration of the Born term

$$\underline{\dot{}} \qquad \rightarrow \int d^3k \,\boldsymbol{\sigma} \cdot \boldsymbol{p}' \,\boldsymbol{\sigma} \cdot \hat{\boldsymbol{k}} \, k \, \frac{1}{k^3} \, k \, \boldsymbol{\sigma} \cdot \boldsymbol{p} \, \boldsymbol{\sigma} \cdot \hat{\boldsymbol{k}}$$

Quadratical divergence

Subtractive renormalization

LO potential: one-baryon irreducible and reducible parts

$$V_{\rm LO} = V_I (\underline{\qquad}) + V_R (\underline{\qquad})$$

LO T-matrix

$$T_{\rm LO} = V_{\rm LO} + V_{\rm LO} \, G \, T_{\rm LO} \qquad \Box$$

$$\begin{cases} T_{LO} = T_{I} + (1 + T_{I}G) T_{R} (1 + GT_{I}) \\ T_{I} = V_{I} + V_{I}G T_{I} \\ T_{R} = V_{R} + V_{R}G (1 + T_{I}G) T_{R} \end{cases}$$

- Irreducible part: $T_I \xrightarrow{\Lambda \sim \infty}$ Finite
- Reducible part: $T_R \xrightarrow{\Lambda \sim \infty}$ Divergent
 - ✓ Potential can be rewritten as separable form

$$V_R(p',p;E) = \xi^T(p') C(E) \xi(p) \qquad \text{C(E): constant} \qquad \xi^T(q) := (1,q)$$

- ✓ T_R can be rewritten as $T_R(p', p; E) = \xi^T(p')\chi(E)\xi(p)$ $\chi(E) = [C^{-1} \xi G\xi^T \xi GT_I^S G\xi^T]^{-1}$ D.B.Kaplan, et al., NPB478, 629(1996); E. Epelbaum, et al., EPJA51, 71(2015)
- ✓ Using subtractive renormalization, replacing Green function $G^{Rn} = G(E) G(m_R)$

E. Epelbaum, et al., EPJA56(2020)152

Renormalized LO T-matrix

$$T_{\rm LO}^{Rn} = T_I + \left(\xi^T + T_I G^{Rn} \xi^T\right) \chi^{Rn}(E) \left(\xi + \xi G^{Rn} T_I\right)$$

Pion-Nucleon scattering

Description phase shifts of pion-nucleon scattering

- Rho-meson-exchange contribution is similar as WT term
- Non-perturbative results are only slightly different from the ones of the perturbative approach

✓ Non-perturbative treatment is valid, since ChPT has good convergence in SU(2) sector

XLR, E. Epelbaum, J. Gegelia and U.-G. Meißner, Eur. Phys. J. C80 (2020) 406

S=-1 meson-baryon scattering

□ Four coupled channels $\overline{K}N$, $\pi\Sigma$, $\eta\Lambda$, $K\Xi$ in isospin limit

Focus on the S-wave potential

Born term (p-wave) does not contribute

- Crossed-Born term \sim 5% of VME contribution
- VME potential couplings

C^V	$\pi \Sigma$	$\bar{K}N$	$\eta\Lambda$	$K \Xi$
$\pi \Sigma$	$C^{\rho} = -16$	$C^{K^*} = 2\sqrt{6}$	0	$C^{K^*} = -2\sqrt{6}$
$\bar{K}N$	attractive	$C^{\{\rho,\omega,\phi\}} = \{-6, -2, -4\}$	$C^{K^*} = -6\sqrt{2}$	0
$\eta\Lambda$		attractive	0	$C^{K^*} = 6\sqrt{2}$
$K \Xi$				$C^{\{\rho,\omega,\phi\}} = \{-6, -2, -4\}$

S=-1 meson-baryon scattering

□ Four coupled channels $\overline{K}N$, $\pi\Sigma$, $\eta\Lambda$, $K\Xi$ in isospin limit

Focus on the S-wave potential

- Born term (p-wave) does not contribute
- Crossed-Born term \sim 5% of VME contribution
- VME potential couplings

C^V	$\pi \Sigma$	$\bar{K}N$	$\eta \Lambda$	$K \Xi$
$\pi \Sigma$	$C^{\rho} = -16$	$C^{K^*} = 2\sqrt{6}$	0	$C^{K^*} = -2\sqrt{6}$
$\bar{K}N$	attractive	$C^{\{\rho,\omega,\phi\}} = \{-6, -2, -4\}$	$C^{K^*} = -6\sqrt{2}$	0
$\eta\Lambda$		attractive	0	$C^{K^*} = 6\sqrt{2}$
$K \Xi$				$C^{\{\rho,\omega,\phi\}} = \{-6, -2, -4\}$

S=-1 meson-baryon scattering

P. W. scattering equation

$$T_{M_{j}B_{j},M_{i}B_{i}}^{LJ}(p',p) = V_{M_{j}B_{j},M_{i}B_{i}}^{LJ}(p',p) + \sum_{MB} \int \frac{dkk^{2}}{(2\pi)^{3}} V_{M_{j}B_{j},MB}^{LJ}(p',k) \frac{1}{2\omega_{M}\omega_{B}} \frac{m_{B}}{E - \omega_{M} - \omega_{B} + i\epsilon} T_{MB,M_{i}B_{i}}^{LJ}(k,p)$$

- Take into account the off-shell effects of potential
- Use subtractive reormalization to obtain the renormalized T-matrix
 - Cutoff-independent: $\Lambda \to \infty$

No free parameters needed to be fitted!

Two pole positions of $\Lambda(1405)$

		lower pole	higher pole
This work	$F_0=F_\pi$	1337.7 - i79.1	1430.9 - i8.0
(LO)	$F_0 = 103.4$	1348.2 - i120.2	1436.3 - i0.7
	Y. Ikeda,NPA(2012)	$1381^{+18}_{-6}-i81^{+19}_{-8}$	$1424^{+7}_{-23}-i26^{+3}_{-14}$
NLO	ZH.Guo,PRC(2013)-Fit II	$1388^{+9}_{-9}-i114^{+24}_{-25}$	$1421^{+3}_{-2}-i19^{+8}_{-5}$
NLO	M.Mai,EPJA(2015)-sol-2	$1330^{+4}_{-5}-i56^{+17}_{-11}$	$1434^{+2}_{-2}-i10^{+2}_{-1}$
	M.Mai,EPJA(2015)-sol-4	$1325^{+15}_{-15} - i90^{+12}_{-18}$	$1429^{+8}_{-7} - i12^{+2}_{-3}$

• Consistent with M. Mai EPJA(2015), in particular for the lower pole

Comes to the unphysical quark mass region ->

Quark mass dependence of $\Lambda(1405)$

XLR, arXiv: 2404.02720 [hep-ph]

$\Lambda(1405)$ from Lattice QCD

 \blacksquare The first lattice study of $\Lambda(1405)$ pole positions

Baryon Scattering Collaboration: PRL 132, 051901 (2024); PRD109,014511(2024)

- Focus on the $\pi\Sigma \bar{K}N$ coupled channels (below $\pi\pi\Lambda$ threshold)
- Pion and Kaon masses: $M_{\pi} \approx 200 \text{ MeV}$, $M_K \approx 487 \text{ MeV}$

Coordinated Lattice Simulations (CLS)				
D200 ensemble				
<i>a</i> (fm)	$(L/a)^3 \times T/a$	$m_{\pi}L$		
0.0633(4)(6)	$64^3 \times 128$	4.181(16)		

• Two poles of $\Lambda(1405)$

Virtual bound stateResonance $E_1 = 1392(9)_{stat}(2)_{model}(16)_a MeV$ $E_2 = [1455(13)_{stat}(2)_{model}(17)_a$ $\left| \frac{c_{\pi\Sigma}^{(1)}}{c_{\bar{K}N}^{(1)}} \right| = 1.9(4)_{stat}(6)_{model}$ $-i11.5(4.4)_{stat}(4.0)_{model}(0.1)_a]MeV$ $\left| \frac{c_{\pi\Sigma}^{(2)}}{c_{\bar{K}N}^{(2)}} \right| = 0.53(9)_{stat}(10)_{model}$

✓ Extract FV energy spectrum

✓ Implement the Lüscher formalism $det[\tilde{K}^{-1}(E_{cm}) - B^{P}(E_{cm})] = 0.$

Apply our framework to unphysical world

BaSc results provide an ideal playground

Check/verify the predictive power of existing chiral unitary approaches

We extend the calculation to the unphysical quark mass region

Use the same meson and baryon masses as the BaSc study

 $\checkmark M_{\pi} = 203.7 \text{ MeV}, M_{K} = 486.4 \text{ MeV}, m_{N} = 979.8 \text{ MeV}, m_{\Sigma} = 1193.9 \text{ MeV}$

 $\checkmark F_0 = F_{\pi} = 93.2 \text{ MeV}$

• Focus on the $\pi\Sigma - \bar{K}N$ coupled channels

Apply our framework to unphysical world

BaSc results provide an ideal playground

Check/verify the predictive power of existing chiral unitary approaches

We extend the calculation to the unphysical quark mass region

Use the same meson and baryon masses as the BaSc study

 $\checkmark M_{\pi} = 203.7 \text{ MeV}, M_{K} = 486.4 \text{ MeV}, m_{N} = 979.8 \text{ MeV}, m_{\Sigma} = 1193.9 \text{ MeV}$

 $\checkmark F_0 = F_{\pi} = 93.2 \text{ MeV}$

• Focus on the $\pi\Sigma - \bar{K}N$ coupled channels

Consistent with the BaSc results			XLR, arXiv: <u>2404.02720</u> [hep-ph]		
	BaSc [PRL2024]	This work			
$\Lambda(1405)$	$z_R \; [{ m MeV}]$	$z_R \; [{ m MeV}]$	$g_{\pi\Sigma}$	$g_{ar{K}N}$	$ g_{\pi\Sigma} / g_{ar{K}N} $
Lower pole	1392(18)	1387.14	0.021 + i1.87	0.017 + i1.55	1.21
Higher pole	1455(21) - i11.5(6.0)	1469.86 - i4.71	0.038 + i0.98	1.51 - i1.22	0.50

• If performing a full calculation with $\pi\Sigma, \bar{K}N, \eta\Lambda, K\Xi$ channels

Lower pole : $z_R = 1389.05$ MeV Higher pole : $z_R = 1464.55 - i9.44$ MeV

Quark mass dependence of model variables

Variables in our LO calculation

$$T = V + V G T$$
$$G(M_{\pi,K,\eta}; m_{N,\Lambda,\Sigma,\Xi})$$

- How to obtain their quark-mass dependence?
- Apply **ChPT formulae:** $f(M_{\pi}, LECs)$
- Fit LQCD data with different quark masses

Focus on the lattice data based on the CLS configuration

Quark mass dependence of model variables

Light-quark mass dependence of $\Lambda(1405)$

□ Full calculation with $\pi\Sigma$, $\bar{K}N$, $\eta\Lambda$, $K\Xi$ channels

With the increase of pion mass

- $\bar{K}N$ interaction gradually strengthens
- $\pi\Sigma$ interaction changes rapidly and is enhanced sufficiently

Similar conclusion given by J.M. Xie et al., PRD 108 (2023) L111502

Next-to-leading order studies

XLR, et al., In progress

Beyond leading order

Maintain the scattering T-matrix renormalizable

- Take LO potential non-perturbatively
- Higher order corrections are perturbatively included

Up to NNLO

- Potential: $V = V_{LO} + V_{NLO} + V_{NNLO}$
- T-matrix: $T = T_{LO} + T_{NLO} + T_{NNLO}$

 $T_{\rm LO} = V_{\rm LO} + V_{\rm LO}GT_{\rm LO} \quad \text{(non-perturbative)}$ $T_{\rm NLO} = V_{\rm NLO} + V_{\rm LO}GT_{\rm NLO} + V_{\rm NLO}GT_{\rm LO}$ $T_{\rm NNLO} = V_{\rm NNLO} + V_{\rm LO}GT_{\rm NNLO} + V_{\rm NLO}GT_{\rm NLO} + V_{\rm NNLO}GT_{\rm LO}$

 Use the subtractive renormalization to remove divergent terms and power-counting breaking terms

πN scattering at NLO

Chiral effective Lagrangian

$$\mathcal{L}_{\pi N}^{(2)} = \bar{\Psi}_N \left\{ c_1 \left\langle \chi_+ \right\rangle - \frac{c_2}{4m^2} \left\langle u^{\mu} u^{\nu} \right\rangle \left(D_{\mu} D_{\nu} + \text{ h.c. } \right) + \frac{c_3}{2} \left\langle u^{\mu} u_{\mu} \right\rangle - \frac{c_4}{4} \gamma^{\mu} \gamma^{\nu} \left[u_{\mu}, u_{\nu} \right] \right\} \Psi_N$$

• Fix $c_1 = -0.74$, $c_2 = 1.81$, $c_3 = -3.61$, $c_4 = 2.17 \text{ GeV}^{-1}$

D. Siemens, et al., PLB770 (2017) 27-34

NLO potential

$$V = V_{\text{LO}} + V_{\text{NLO}}$$

= $V^{(a+b+c+d)}|_{u=u_0 \sim (1,0)^{\dagger}} + V^{(a+b+c+d)}|_{u=u_1 \sim \mathcal{O}(p)} + V^{(e)}|_{u=u_0 \sim (1,0)^{\dagger}}$

D Prediction for the πN phase shifts

Summary

A renormalized framework for MB scattering is proposed

- Time-ordered perturbation theory + Covariant chiral Lagrangians
- Take into account the off-shell effects of potential
- Employ the subtractive renormalization
 - ✓ achieve T-matrix is cutoff-independent

Leading order study

- πN scattering; $\overline{K}N$ scattering with coupled channels
- Obtain the **two-pole structure** of $\Lambda(1405)$
- Investigate the light-quark mass dependence of $\Lambda(1405)$
- Next-leading order study
 - NLO correction is perturbatively included
 - πN scattering: improve the description of phase shifts

Summary

A renormalized framework for MB scattering is proposed

- Time-ordered perturbation theory + Covariant chiral Lagrangians
- Take into account the off-shell effects of potential
- Employ the subtractive renormalization
 - ✓ achieve T-matrix is cutoff-independent

Leading order study

- πN scattering; $\overline{K}N$ scattering with coupled channels
- Obtain the **two-pole structure** of $\Lambda(1405)$
- Investigate the light-quark mass dependence of $\Lambda(1405)$
- Next-leading order study
 - NLO correction is perturbatively included
 - πN scattering: improve the description of phase shifts
 - Plan: extend to $\bar{K}N$ scattering, $\Lambda(1405)$, and other resonances

HAL QCD

Thank you for your altention!

Back up

Finite cutoff artifact

We extend the calculation to the unphysical quark mass region

Use the same meson and baryon masses as the BaSc study

$$M_{\pi} = 203.7 \text{ MeV}, M_{K} = 486.4 \text{ MeV}, m_{N} = 979.8 \text{ MeV}, m_{\Sigma} = 1193.9 \text{ MeV}$$

✓ $F_0 = F_{\pi} = 93.2 \text{ MeV}$

• Focus on the $\pi\Sigma - \bar{K}N$ coupled channels

- Λ ≥ 3 GeV, cutoff-independent results achieved!
- Renormalized $\pi\Sigma \bar{K}N$ amplitudes

Fix
$$\Lambda = 10 \text{ GeV}$$