Fine-tuning of the $\bar{K}NN$ and $\bar{K}NNN$ calculations

Nina V. Shevchenko

Nuclear Physics Institute, Řež, Czech Republic

International Workshop SPICE: "Strange hadrons as a Precision tool for strongly InteraCting systEms"

ECT*, Trento, Italy, May 13-17, 2024

Introduction

Interest to antikaon-nucleon systems: quasi-bound state in the K^-pp system \rightarrow experimental and theoretical efforts with different results

Experimental evidences (FINUDA, DISTO); J-PARK E15 experiment: clear observation of the K^-pp quasi-bound state with $BE = 42 \pm 3$ MeV, $\Gamma = 100 \pm 7$ MeV.

The problem: big difference between theoretical and experimental widths

Our K^-pp calculations: Faddeev-type dynamically exact equations with coupled $\bar{K}NN - \pi\Sigma N$ channels, different $\bar{K}N - \pi\Sigma - \pi\Lambda$ and NN interactions

What could change the theoretical results:

- More accurate model of the $\Sigma N \Lambda N$ interaction ("different models could change the three-body K^-pp pole position quite strongly")
- Inclusion of the πN interaction ("variation of the interaction parameters lead to smaller differences"),
- Direct inclusion of the $\pi \Lambda N$ channel $(\bar{K}NN \pi \Sigma N \pi \Lambda N$ calculations, "strong dependence")

∃ <2 <</p>

2/20

Faddeev-type three-body AGS equations, three channels

$$U_{ij}^{\alpha\beta} = \delta_{\alpha\beta} (1 - \delta_{ij}) (G_0^{\alpha})^{-1} + \sum_{k=1}^{3} \sum_{\gamma=1}^{5} (1 - \delta_{ik}) T_k^{\alpha\gamma} G_0^{\gamma} U_{kj}^{\gamma\beta}$$

 $\bar{K}N$ interaction is strongly coupled to $\pi\Sigma$ via $\Lambda(1405)$ resonance $\rightarrow \pi\Sigma$ and $\pi\Lambda$ channel was included directly. Particle channels:

$$\begin{array}{ll} \alpha = 1: |\bar{K}_1 N_2 N_3 \rangle, & \alpha = 2: |\pi_1 \Sigma_2 N_3 \rangle & \alpha = 3: |\pi_1 N_2 \Sigma_3 \rangle \\ & \alpha = 4: |\pi_1 \Lambda_2 N_3 \rangle & \alpha = 5: |\pi_1 N_2 \Lambda_3 \rangle \end{array}$$

Separable form of the potentials:

$$V_i^{\alpha\beta} = \lambda_i^{\alpha\beta} |g_i^{\alpha}\rangle \langle g_i^{\beta}| \qquad \rightarrow \qquad T_i^{\alpha\beta} = |g_i^{\alpha}\rangle \tau_i^{\alpha\beta} \langle g_i^{\beta}|$$

the three-body equations are rewritten as

$$X_{ij}^{\alpha\beta}(z) = \delta_{\alpha\beta} Z_{ij}^{\alpha} + \sum_{k=1}^{3} \sum_{\gamma=1}^{5} Z_{ik}^{\alpha} \tau_{k}^{\alpha\gamma} X_{kj}^{\gamma\beta}$$

Two-body $\overline{K}N - \pi\Sigma - \pi\Lambda$ *T*-matrices are necessary, $\overline{K}N - \pi\Sigma = \pi\Lambda$

3/20

Nina V. Shevchenko (NPI Řež) Fine-tuning of the $\bar{K}NN$ and $\bar{K}NN\Lambda$ SPICE, ECT*

New $\bar{K}N$ interaction, three coupled channels

Three antikaon-nucleon interaction models:

- phenomenological $\bar{K}N \pi \Sigma \pi \Lambda$ with one-pole $\Lambda(1405)$ resonance
- phenomenological $\bar{K}N \pi \Sigma \pi \Lambda$ with two-pole $\Lambda(1405)$ resonance
- chirally motivated $\bar{K}N \pi\Sigma \pi\Lambda$ potential, two-pole $\Lambda(1405)$

reproduce (with the same level of accuracy):

- 1s level shift and width of kaonic hydrogen (SIDDHARTA) direct inclusion of Coulomb interaction, no Deser-type formula used
- $\bullet~{\rm Cross-sections}~{\rm of}~K^-p\to K^-p~{\rm and}~K^-p\to MB$ reactions
- Threshold branching ratios γ , R_c and R_n
- $\Lambda(1405)$ resonance (one- or two-pole structure) $M^{PDG}_{\Lambda(1405)} = 1405.1^{+1.3}_{-1.0} \text{ MeV}, \ \Gamma^{PDG}_{\Lambda(1405)} = 50.5 \pm 2.0 \text{ MeV} \ [PDG (2023)]$

New $\bar{K}N$ potentials, K^-p scattering

Figure: New $V_{\bar{K}N}$ potentials: one-pole, two-pole phenomenological and chirally motivated

SPICE, ECT*

5/20

э

Physical characteristics of the three new $\bar{K}N - \pi\Sigma - \pi\Lambda$ potentials

Physical characteristics of the three $\bar{K}N - \pi\Sigma - \pi\Lambda$ potentials: 1s level shift and width, strong pole(s), γ , R_c , R_n threshold branching ratios, a_{K^-p} scattering length (physical masses in all channels, Coulomb in K^-p).

	$V^{1,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma-\pi\Lambda}$	$V^{2,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma-\pi\Lambda}$	$V_{\bar{K}N-\pi\Sigma-\pi\Lambda}^{\text{Chiral}}$	Exp
ΔE_{1s}	-322.6	-323.5	-311.6	$-283\pm36\pm6$
Γ_{1s}	645.4	633.8	605.8	$541\pm89\pm22$
E_1	1429.5 - i35.0	1430.9 - i41.6	1429.6 - i33.2	
E_2	—	1380.4 - i79.9	1367.8 - i66.5	
γ	2.35	2.36	2.36	2.36 ± 0.04
R_c	0.666	0.664	0.664	0.664 ± 0.011
R_n	0.190	0.189	0.190	0.189 ± 0.015
a_{K^-p}	-0.77 + i0.97	-0.78 + i0.95	-0.75 + i0.90	

Nina V. Shevchenko (NPI $\tilde{R}e\tilde{z}$) Fine-tuning of the $\bar{K}NN$ and $\bar{K}NN\Lambda$ SPICE, ECT*

NN potential

 $\frac{\text{Two-term Separable New potential (TSN) of nucleon-nucleon interaction}}{[N.V.S. Few-body syst 61, 27 (2020)]}$

$$V_{NN}^{\text{TSN}}(k,k') = \sum_{m=1}^{2} g_m(k) \lambda_m g_m(k'),$$

$$g_m(k) = \sum_{n=1}^{3} \frac{\gamma_{mn}}{(\beta_{mn})^2 + k^2}, \quad \text{for } m = 1, 2$$

fitted to Argonne V18 potential [R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)] phase shifts

Triplet and singlet scattering lengths a and effective ranges $r_{\rm eff}$

$$\begin{split} a_{np}^{\rm TSN} &= -5.400\,{\rm fm}, \qquad r_{{\rm eff},np}^{\rm TSN} = 1.744\,{\rm fm} \\ a_{pp}^{\rm TSN} &= 16.325\,{\rm fm}, \qquad r_{{\rm eff},pp}^{\rm TSN} = 2.792\,{\rm fm}, \end{split}$$

deuteron binding energy $E_{deu} = 2.2246$ MeV.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

New NN potential

Figure: Phase shifts of np and pp scattering calculated using the new V_{NN}^{TSN} and $V_{NN}^{\text{TSA-B}}$ potentials plus phase shifts of Argonne V18

Spin- and isospin-dependent potential

$$V_{I,S}^{\Sigma N}(k,k') = \lambda_{I,S}^{\Sigma N} g_{I,S}^{\Sigma N}(k) g_{I,S}^{\Sigma N}(k'), \quad g_{I,S}^{\Sigma N}(k) = \frac{1}{(k^2 + \beta_{I,S}^{\Sigma N})^2}$$

- I = 1/2: Two-channel $\Sigma N \Lambda N$ potential, real parameters
- I = 3/2: One-channel case, real parameters

Parameters were fitted to experimental cross-sections and scattering lengths from an "advanced" potential

[Haidenbauer et al., Eur. Phys. J. A 59 (2023) 63]

(人間) とうき くうり

9/20

ΣN and ΛN cross-sections: theory vs. experiment

Figure: Comparison with the experimental data on ΣN and ΛN cross-sections

ΣN and ΛN cross-sections: theory vs. experiment

Figure: Comparison with the experimental data on ΣN and ΛN cross-sections

<u>Scattering lengths</u> given by the new $\Sigma N - \Lambda N$ potential (in fm) compared to those of the "advanced" potential (signs are opposite).

	$V_{I,S}^{\Sigma N}$	"Advanced" $V^{\Sigma N}$
$a_{I=1/2,S=0}^{\Sigma N}$	-1.40 + i0.00	-1.03 + i0.00
$a_{I=1/2,S=1}^{\Sigma N}$	-0.03 + i5.77	-2.60 + i 2.56
$a_{I=3/2,S=0}^{\Sigma N}$	2.78	3.47
$a_{I=3/2,S=1}^{\Sigma N}$	-0.37	-0.41
$a_{I=1/2,S=0}^{\Lambda N}$	2.57	2.80
$a_{I=1/2,S=1}^{\Lambda N}$	1.49	1.56

・ロト ・ 同ト ・ ヨト ・ ヨト

Isospin-dependent potential

$$V_{I}^{\pi N}(k,k') = \lambda_{I}^{\pi N} g_{I}^{\pi N}(k) g_{I}^{\pi N}(k'), \quad g_{I}^{\pi N}(k) = \frac{1}{(k^{2} + \beta_{I}^{\pi N})^{2}}$$

Parameters were fitted to the S-wave phase shifts and scattering lengths:

Theoretical values:

•
$$a_{\pi N,I=1/2}^{\text{Exp}} = 0.34 \text{ fm}$$

•
$$a_{\pi N,I=3/2}^{\text{Exp}} = -0.34 \text{ fm}$$

3 1 4 3 1

3

πN phase shifts: theory vs. experiment

Figure: Comparison with the experimental data on πN phase shifts

14/20

Nina V. Shevchenko (NPI Řež) Fine-tuning of the $\bar{K}NN$ and $\bar{K}NNN$ SPICE, ECT*

<u>*K*-*pp*</u> quasi-bound state: Three-channel three-body $\bar{K}NN - \pi\Sigma N - \pi\Sigma\Lambda$ calculations with new $V_{\Sigma N-\Lambda N}$ and $V_{\pi N}$ potentials compared to the previous results (two-channel three-body $\bar{K}NN - \pi\Sigma N - \pi\Sigma$ calculations with older potentials). Binding energies B_{K^-pp} (MeV) and widths Γ_{K^-pp} (MeV) are shown.

	$V_{\bar{K}N}^{1,{ m SIDD}}$		$V_{\bar{K}N}^{2,{ m SIDD}}$		$V_{\bar{K}N}^{ m Chiral}$	
	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}
$V_{\mathrm{Prev}\Sigma\mathrm{N},\pi\mathrm{N}}^{\mathrm{2ch}}$	52.2	67.1	46.6	51.2	29.4	46.4
$V^{\rm 3ch}_{{ m New}\Sigma{ m N},\pi{ m N}}$	33.8	67.6	46.0	65.3	27.8	68.6

Four-body equations

The four-body Faddeev-type AGS equations, written for separable potentials [P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 181-206 (1967)]

$$\begin{split} \bar{U}^{\sigma\rho}_{\alpha\beta}(z) &= (1-\delta_{\sigma\rho})(\bar{G_0}^{-1})_{\alpha\beta}(z) + \sum_{\tau,\gamma,\delta} (1-\delta_{\sigma\tau})\bar{T}^{\tau}_{\alpha\gamma}(z)(\bar{G_0})_{\gamma\delta}(z)\bar{U}^{\tau\rho}_{\delta\beta}(z), \\ \bar{U}^{\sigma\rho}_{\alpha\beta}(z) &= \langle g_{\alpha}|G_0(z)U^{\sigma\rho}_{\alpha\beta}(z)G_0(z)|g_{\beta}\rangle, \\ \bar{T}^{\tau}_{\alpha\beta}(z) &= \langle g_{\alpha}|G_0(z)U^{\tau}_{\alpha\beta}(z)G_0(z)|g_{\beta}\rangle, \quad (\bar{G_0})_{\alpha\beta}(z) = \delta_{\alpha\beta}\tau_{\alpha}(z). \end{split}$$

Operators $\bar{U}^{\sigma\rho}_{\alpha\beta}$ and $\bar{T}^{\tau}_{\alpha\beta}$ contain four-body $U^{\sigma\rho}_{\alpha\beta}(z)$ and three-body $U^{\tau}_{\alpha\beta}(z)$ transition operators of the general form, correspondingly. Separable form of the "effective three-body potentials" :

$$\bar{T}^{\tau}_{\alpha\beta}(z) = |\bar{g}^{\tau}_{\alpha}\rangle \bar{\tau}^{\tau}_{\alpha\beta}(z) \langle \bar{g}^{\tau}_{\beta}|$$

 \rightarrow the four-body equations can be rewritten as

[A. Casel, H. Haberzettl, W. Sandhas, Phys. Rev. C 25, 1738 (1982)]

$$\bar{X}^{\sigma\rho}_{\alpha\beta}(z) = \bar{Z}^{\sigma\rho}_{\alpha\beta}(z) + \sum_{\tau,\gamma,\delta} \bar{Z}^{\sigma\tau}_{\alpha\gamma}(z) \bar{\tau}^{\tau}_{\gamma\delta}(z) \bar{X}^{\tau\rho}_{\delta\beta}(z)$$

16/20

with new four-body transition $\bar{X}^{\sigma\rho}$ and kernel $\bar{Z}^{\sigma\rho}$ operators.

Subsystems

Partitions of the $\bar{K}NNN$ system

two partitions of 3 + 1 type: $|\bar{K} + (NNN)\rangle$, $|N + (\bar{K}NN)\rangle$, one of the 2 + 2 type: $|(\bar{K}N) + (NN)\rangle$

<u>*K*-ppn - \bar{K}^0 nnp system</u>: $\bar{K}NNN$ with $I^{(4)} = 0, S^{(4)} = 1/2, L^{(4)} = 0$

• $\bar{K}NN (I^{(3)} = 1/2, S^{(3)} = 0 \text{ or } 1)$

•
$$NNN(I^{(3)} = 1/2, S^{(3)} = 1/2)$$

• $\overline{KN} + NN (I^{(4)} = 0, S^{(4)} = 1/2)$ – a special system with two non--interacting pairs of particles; 3-body system of equations to be solved

Full system of equations was solved with:

- 1-term separable $\overline{KN} \pi \Sigma \pi \Lambda$ potential, 2-term separable NN potential (input)
- 1-term separabelized 3-body NNN, $\bar{K}NN$ "T-matrices" and "3-body" $\bar{K}N+NN$ "T-matrices"

・ロト ・戸 ・ ・ヨト ・ヨー うへつ

17/20

EDPE/EDPA separabelization

Separabelization of 3 + 1 and 2+2 amplitudes: Energy Dependent Pole Expansion/Approximation (EDPE/ EDPA) [S. Sofianos, N.J. McGurk, H. Fiedeldeldey, Nucl. Phys. A 318, 295 (1979)]

Three-body Faddeev-type AGS equations written in momentum basis:

$$X_{\alpha\beta}(p,p';z) = Z_{\alpha\beta}(p,p';z) + \sum_{\gamma=1}^{3} \int_{0}^{\infty} Z_{\alpha\gamma}(p,p'';z) \,\tau_{\gamma}(p'';z) \,X_{\gamma\beta}(p'',p';z)p''^{2}dp'',$$

eigenvalues λ_n and eigenfunctions $g_{n\alpha}(p;z)$ of the system – from

$$g_{n\alpha}(p;z) = \frac{1}{\lambda_n} \sum_{\gamma=1}^3 \int_0^\infty Z_{\alpha\gamma}(p,p';z) \,\tau_\gamma(p';z) \,g_{n\gamma}(p';z) p'^2 dp'$$

EDPE/EDPA method: solution of the eigenequations for a fixed energy z, usually $z = E_B$. After that energy dependent form-factors $g_{n\alpha}(p; z)$ and propagators $(\Theta(z))_{mn}^{-1}$ are calculated. The separable version of a three-body amplitude:

$$X_{\alpha\beta}(p,p';z) = \sum_{m,n=1}^{\infty} g_{m\alpha}(p;z) \Theta_{mn}(z) g_{n\beta}(p';z).$$

Nina V. Shevchenko (NPI $\tilde{R}e\tilde{z}$) Fine-tuning of the $\bar{K}NN$ and $\bar{K}NNN$ SPICE, ECT* 18/20

Dependence of the binding energy B (MeV) and width Γ (MeV) of the quasi-bound state in the $K^-ppn - \bar{K}^0nnp$ system on three $\bar{K}N$ interaction models.

	Two-channel		Three-channel		
	$\bar{K}N(-\pi\Sigma)$	potential	$\bar{K}N(-\pi\Sigma-\pi)$	$\pi\Lambda$) potential	
	В	Γ	В	Г	
$V_{\bar{K}N}^{1,\mathrm{SIDD}}$	51.2	50.8	41.5	41.8	
$V_{\bar{K}N}^{2,\mathrm{SIDD}}$	46.4	39.9	39.6	37.5	
$V_{\bar{K}N}^{\rm Chiral}$	30.5	42.8	32.1	54.8	

Summary

- Fine tuning of the K^-pp quasi-bound state: calculations with the three-channel $\bar{K}N \pi\Sigma \pi\Lambda$ potentials, new version of the $\Sigma N \Lambda N$ and πN potentials: Larger widths then before calculated using all three $\bar{K}NN$ potentials; the width are comparable
- Fine-tuning of the $\bar{K}NNN$ system: calculations with exact optical version of the three-channel $\bar{K}N \pi\Sigma \pi\Lambda$ potentials lead to strong changes in binding energies and/or widths

To do list:

- limitations on the potentials from femtoscopy measurements;
- influence of the new potentials on the K^-np system (quasi-bound state remains?);
- renew the prediction for the kaonic deuterium