Bayesian inference of thermal effects in dense matter

Adriana R. Raduta (araduta@nipne.ro)

Collaborator: Mikhail Beznogov (IFIN-HH, Bucharest)

Beznogov & Raduta, Phys. Rev. C 107, 045803 (2023) Raduta, Beznogov & Oertel, arXiv: 2402.14593

- EOS in the era of multimessenger astrophysics
- C(ovariant) D(ensity) F(unctional) EOS for cold and dense matter: a Bayesian approach
 - model dependence of the results
 - correlations with parameters of N(uclear) M(atter)
- Thermal effects on thermal energy density and pressure, entropy per baryon, heat capacities at constant volume and pressure, adiabatic and thermal index, speed of sound in CDF EOS
 - correlations with effective Dirac mass
 - pseudo-Sommerfeld expansion
 - test of alternative Sommerfeld expansion [Constantinou+, Ann. Phys. (2015)]
- Conclusions

Phenomenological EOS in the era of multimessenger astrophysics (I)

- EOS an essential ingredient for atomic nuclei, NM and NS
- EOS built from effective interactions designed to comply with the symmetry properties of the space; with parameters tunned such as to describe nuclear data (masses, charge r.m.s. radii, neutron skin thicknesses, charge radii diff. in mirror nuclei, energy of giant monopole/dipole/quadrupole resonances, dipole polarizability, flow and particle production in heavy ion collisions, etc.)
 - e.g.: Skyrme, Gogny, MDI, CDF
- well known around $(n_{\rm sat},\delta=0)$ with $n_{\rm sat}\sim 2.7\cdot 10^{14}{\rm g/cm^3}\sim 0.16~{\rm fm^{-3}}$ and $\delta=(n_n-n_p)/n$
- uncertain at high densities and isospin asymmetries

Phenomenological EOS in the era of multimessenger astrophysics (II)

- availability of NS data, e.g., $M_G/M_{\odot} \gtrsim 2$ [1], tidal deformabilities [2], radii [3], resulted in a renaissance; better constraints at (n, δ) not accesible so far
- situation is still difficult: few data; large error bars; dependence on NS mass and the <u>unknown</u> EOS, different density domains are explored; every global param. depends in a specific and convoluted way on the EOS behavior over different density domains
- complexity & uncertainties best handled in statistical approaches, e.g., Bayesian

[1] Antoniadis+, Science (2013); Arzoumanian+, ApJSS (2018); Cromartie+, Nature (2020); Fonseca+, ApJL
(2021) [2] Abbott+, PRL (2017); Abbott+, PRX (2019) [3] Miller+, ApJL (2019); Riley+, ApJL (2019); Miller+,
ApJL (2021); Riley+, ApJL (2021); Vinciguerra+, ApJ (2024)

Bayesian inferences of EOSs for cold and dense matter

- Phenomenological models successfully used in nuclear physics are employed:
 - non-relativistic models with Skyrme effective interactions [1],
 - CDF with D(ensity) D(ependent) and non-linear couplings [2]
- Constraints: nuclear empirical parameters (NEP), χ EFT calculations of P(pure) N(eutron) (M)atter, astro. measurements of NSs; various combinations
- Conclusions: EOS, properties of NSs, global parameters of NSs, correlations depend on priors, sets of constraints, structure of the density functional
- ... In the following, CDF with DD couplings will be considered

[1] Zhou, Xu & Papakonstantinou, PRC (2023); Beznogov & Raduta, ApJ (2024); Beznogov & Raduta, arXiv:2403.19325

[2] Malik+, ApJ (2022); Malik+, PRD (2023); Beznogov & Raduta, PRC (2023); Char+, PRD (2023) 📑 🔊 🤈 🖉

5/25

Covariant Density Functional model with Density Dependent couplings

Lagrangian density [1,2]: $\mathscr{L}(\sigma, \omega, \rho; \Gamma_{\sigma}, \Gamma_{\omega}, \Gamma_{\rho})$

Density-dependent couplings [3]: $\Gamma_M(n) = \Gamma_{M,0}h_M(x)$, $x = n/n_{sat}$, with

 $h_M(x) = \exp[-(x^{a_M} - 1)], M = \sigma, \omega; \quad h_\rho(x) = \exp[-a_\rho(x - 1)]$

6 parameters: $\Gamma_{\sigma,0}$, $\Gamma_{\omega,0}$, $\Gamma_{\rho,0}$, a_{σ} , a_{ω} , a_{ρ}

 Walecka, Ann. Phys. (1974); [2] Typel & Wolter, Nucl. Phys. A (1999); [3] Malik, Ferreira, Agrawal & Providencia, Ap.J. (2022)

Constraints

Quantity	Units	Value	Std. deviation	Ref.
n _{sat}	fm^{-3}	0.153	0.005	[1]
E_{sat}	MeV	-16.1	0.2	[2]
K _{sat}	MeV	230	40	[3,4]
$J_{\rm sym}$	MeV	32.5	1.8	[5]
\dot{P}_1	MeV/fm ³	0.509	2×0.093	[6]
P_2	MeV/fm ³	1.238	2×0.302	[6]
P_3	MeV/fm ³	2.482	2×0.687	[6]
$M_{\rm G}^*$	M_{\odot}	> 2.0		[7]

NM parameters;

density behavior of PNM as predicted by χ EFT; 1, 2, 3: $n_B = 0.08$, 0.12, 0.16 fm⁻³ astro. constraint

[1] Typel & Wolter, NuclPhysA (1999); [2] Dutra+, PhysRevC (2014); [3] Todd-Rutel & Piekarezicz, PhysRevLett
 (2005); [4] Shlomo+, EPJA (2006); [5] Essik+, PhysRevC (2021); [6] Hebeler+, ApJ (2013); [7] Fonseca+, ApJL
 (2021);

A. Raduta

Priors, Likelihood

Priors: uniform (uninformative) distributions [1]

Likelihood: $\log \mathscr{L}_q \propto -\chi_q^2 = -\sum_{n=1}^N \chi_n^2 - \chi_{\text{thr.}}^{'2}$

1) Uncorrelated obs., e.g., n_{sat} , E_{sat} , K_{sat} , L_{sym} , $(E/A)_i$:

$$-\chi_n^2 = -\frac{1}{2} \left(\frac{d_i - \xi_i(\Theta)}{\mathcal{Z}_i} \right)^2$$

2) "Hard-wall" (threshold), $M_{
m G}^*$: $-\chi_{
m thr.}^{'2}$ = -10^{10} , if $M_{
m G}^*/M_{\odot}$ < 2

[1] Malik, Ferreira, Agrawal & Providencia, ApJ (2022)

A. Raduta

Marginalized posterior distributions (I): NM parameters

Quantity	Units	Med.	68% CI	Data	Ref.
n _{sat}	fm ⁻³	0.153	$+0.0049 \\ -0.0049$	0.153 ± 0.005	[1]
Esat	MeV	-16.1	$+0.2 \\ -0.2$	-16.1 ± 0.2	[2]
Ksat	MeV	247	+33 -28	230 ± 40	[3,4]
Qsat	MeV	-39.9	+160 - 130	_	
Zsat	MeV	1360	+410 -830	_	
J _{sym}	MeV	32.1	+1.8 -1.8	32.5 ± 1.8	[5]
L _{sym}	MeV	42.3	+15 -13	—	
K _{sym}	MeV	-105	$+27 \\ -24$	-	
Q _{sym}	MeV	932	$+360 \\ -420$	_	
$Z_{\rm sym}$	MeV	-6440	$+3100 \\ -3800$	—	
$m_{\rm eff}$	$m_{ m N}$	0.657	+0.041 -0.045	0.55 ± 0.05	[6]
P_1	MeV/fm^3	0.537	+0.1 -0.12	0.509 ± 0.186	[7]
P_2	MeV/fm^3	1.2	+Ŏ.39 -0.39	1.238 ± 0.604	[7]
P_3	MeV/fm^3	2.67	+0.82 -0.72	2.482 ± 1.374	[7]

[1] Typel & Wolter, NuclPhysA (1999); [2] Dutra+, PhysRevC (2014); [3] Todd-Rutel & Piekarezicz, PhysRevLett
 (2005); [4] Shlomo+, EPJA (2006); [5] Essik+, PhysRevC (2021); [6] Typel, PhysRevC (2005); [7] Hebeler+, ApJ
 (2013);

April 26, 2024

Marginalized posterior distributions (II): NS parameters

Quantity	Units	Med.	68% CI	Obs.	Ref.
$M_{\rm G}^*$	M_{\odot}	2.16	$^{+0.15}_{-0.11}$	$\gtrsim 2$	[1]
$M_{\rm B}^*$	M_{\odot}	2.57	$^{+0.2}_{-0.15}$	-	-
$n_{\rm c}^*$	fm^{-3}	0.98	$+0.079 \\ -0.083$	-	-
$ ho^*_{\mathrm{c},15}$	$10^{15} { m g/cm^3}$	2.21	$^{+0.19}_{-0.18}$	-	-
$P_{c,36}^{*}$	10 ³⁶ dyn/cm ²	0.798	$^{+0.091}_{-0.097}$	-	-
$R_{1.4}$	km	12.6	$^{+0.42}_{-0.42}$	12.45 ± 0.65	[2]
$\Lambda_{1.4}$	-	519	$+120 \\ -100$	190^{+390}_{-120} *	[3]
<i>R</i> _{2.0}	km	12.2	$+0.62 \\ -0.64$	12.35 ± 0.75	[2]
M _{DU}	M_{\odot}	-	-	_	_

[1] Fonseca+, ApJL (2021); [2] Miller+, ApJLett (2021); [3] Abbott+, PhysRevLett (2018)

* at 90% CI

Correlations between NM and NS params

- $R_{1.4} L_{sym}$ (very weak)
- R_{1.4} K_{sat}, Q_{sat} (weak)
- P_c^* Z_{sat} ; n_c^* Q_{sat} (weak)
- P_c^* $m_{
 m eff}$ (strong)

A. Raduta

11/25

Finite temperature EOSs

- simulations of core-collapse supernovae, proto-NS evolution, BNS mergers, stellar BH formation require 3D EOSs; values of state variables and microscopic quantities are provided for wide domains of baryonic density $[10^{-10} \le n_B \le 1 10 \text{ fm}^{-3}]$, temperature $[0 \le T \le 100 \text{ MeV}]$ and charge fraction $[0 \le Y_Q \le 0.6]$
- many such EOSs are available^{*}; based on ab initio/relativistic/non-relativistic approaches; account for different properties of NM (K_{sat} , E_{sym} , L_{sym} , etc.); various compositions (nucleonic, admixtures of hyperons, Δs , π , K, quarks)

Question: which properties of NM govern the finite-T behavior?

- In this talk: CDFs with DD couplings;
 - correlations between e_{th} , p_{th} , S/A, Γ_{th} , Γ_S , C_V , C_P , c_S^2 and Dirac mass;
 - the 10^5 models of run 1 in Ref. [1] are considered;
 - n = 0.15, 0.6 fm⁻³, T = 20,50 MeV and $Y_Q = 0.5$

A. Raduta

^{*} https://compose.obspm.fr/

^[1] Beznogov & Raduta, Phys.Rev.C (2023)

CDF in short

Energy density and pressure:

$$e = e_{kin} + e_{int},$$

 $p = p_{kin} + p_{int} + p_{rearrang}.$

Kinetic terms:

$$\begin{split} e_{\rm kin} &= \sum_{i={\rm n},p} \frac{1}{\pi^2} \int_0^\infty dk k^2 E_i(k) f_{\rm FD} \left(E_i(k) - \mu_i^* \right), \\ p_{\rm kin} &= \frac{1}{3} \sum_{i={\rm n},p} \frac{1}{\pi^2} \int_0^\infty \frac{dk k^4}{E_i(k)} f_{\rm FD} \left(E_i(k) - \mu_i^* \right). \end{split}$$

Interaction terms:

$$\begin{split} e_{\rm int} &= \frac{m_\sigma^2}{2}\bar{\sigma}^2 + \frac{m_\omega^2}{2}\bar{\omega}^2 + \frac{m_\rho^2}{2}\bar{\rho}^2,\\ p_{\rm int} &= -\frac{m_\sigma^2}{2}\bar{\sigma}^2 + \frac{m_\omega^2}{2}\bar{\omega}^2 + \frac{m_\rho^2}{2}\bar{\rho}^2. \end{split}$$

Mean field expectations:

$$\begin{split} m_{\sigma}^2 \bar{\sigma} &= \sum_{i=n,p} \Gamma_{\sigma} n_i^s, \\ m_{\omega}^2 \bar{\omega} &= \sum_{i=n,p} \Gamma_{\omega} n_i, \\ m_{\rho}^2 \bar{\rho} &= \sum_{i=n,p} \Gamma_{\rho} t_{3i} n_i, \end{split}$$

where

$$\begin{split} n_{i}^{\rm s} &= \frac{1}{\pi^{2}} \int_{o}^{\infty} \frac{dkk^{2}m_{i}^{*}}{E_{i}(k)} f_{\rm FD}\left(E_{i}(k) - \mu_{i}^{*}\right) \\ n_{i} &= \frac{1}{\pi^{2}} \int_{o}^{\infty} dkk^{2} f_{\rm FD}\left(E_{i}(k) - \mu_{i}^{*}\right). \end{split}$$

with
$$E_i(k) = \sqrt{k^2 + m_i^{\ast 2}}$$

April 26, 2024

< A >

< ∃→

э

CDF at finite temperature

effective chemical potential $\mu_i^* = \mu_i - \Gamma_\omega \bar{\omega} - \Gamma_\rho t_{3i} \bar{\rho} - \Sigma_R,$

and effective mass $m_i^* = m_{\rm N} - \Gamma_\sigma \bar{\sigma}$

are linked via

$$n_i = \frac{1}{\pi^2} \int_0^\infty dk k^2 f_{\rm FD} \left(E_i(k) - \mu_i^* \right).$$

$$\Rightarrow$$
 $e_{
m th}$, $p_{
m th}$, etc. depend on m^*

 μ^* and m^* are n and T-dependent *T*-modifications are comparable

[1] Constantinou+, PhysRevC (2014); ibid. (2015)

A. Raduta

April 26, 2024

Thermal energy

- excellent, almost linear scaling with the Dirac effective mass;
- can be understood within the low-T approximation, but persists beyond it

April 26, 2024

∍⊳

Thermal pressure

$$p_{\text{th}} = p(n, Y_p, T) - p(n, Y_p, T = 0)$$

"high" densities

- *p*_{th} is positively correlated with the Dirac effective mass
- correlations weakening is due to the rearrangement term
- similar quality at low and at high temperatures

"low" densities

- $p_{\text{int; th}} > p_{\text{kin; th}}$, p_{th} is negatively correlated with the Dirac effective mass
- the correlation is stronger at high T

Thermal index

 $\Gamma_{\rm th} = 1 + p_{\rm th}/e_{\rm th}$ 1.95 1.7 1.9 ÷ 1.85 1.6 1.8 1.5 0.55 0.6 0.65 0.7 0.75 0.2 0.25 0.3 0.35 0.4 2.05 2 1.7 _≘1.95 1.6 1.9 1.85 F T=20 MeV: n=0.15 fm T=20 MeV: n=0.6 fm⁻³ 1.5 0.6 0.7 0.2 0.25 0.3 0.35 0.4 m*(T)/m_N $m^{*}(T)/m_{N}$

- strong correlations between Γ_{th} and the Dirac effective mass
- two regimes: positive (negative) correlations at "high" ("low") densities similar to the case of p_{th}

B ()

Entropy per nucleon

- excellent, almost linear scaling with Dirac mass
- similar quality at all (n, T)

- excellent, almost linear scaling with Dirac mass
- change in sign at low densities and high temperatures

< ∃⇒

Adiabatic index & speed of sound

A. Raduta

Bayesian inference of thermal effects in de

April 26, 2024

20/25

Pseudo-Sommerfeld expansion:

$$\begin{split} e_{\rm kin}\left(T\right) &\approx \frac{\mu^*}{8\pi^2} \left(2\mu^{*2} - m^{*2}\right) \sqrt{\mu^{*2} - m^{*2}} - \frac{m^{*4}}{8\pi^2} \ln\left(\frac{\sqrt{\mu^{*2} - m^{*2}}}{m^*} + \frac{\mu^*}{m^*}\right) \\ &+ \frac{1}{6} T^2 \frac{\mu^* \left(3\mu^{*2} - 2m^{*2}\right)}{\left(\mu^{*2} - m^{*2}\right)^{1/2}} \end{split}$$

$$\begin{split} p_{\rm kin}\left(T\right) &\approx \frac{\mu^*}{24\pi^2} \left(2\mu^{*2} - 5m^{*2}\right) \sqrt{\mu^{*2} - m^{*2}} + \frac{1}{8\pi^2} m^{*4} \ln\left(\frac{\sqrt{\mu^{*2} - m^{*2}}}{m^*} + \frac{\mu^*}{m^*}\right) \\ &+ \frac{1}{6} T^2 \mu^* \left(\mu^{*2} - m^{*2}\right)^{1/2} \end{split}$$

 \Rightarrow In this limit, $e_{\rm th}$, $p_{\rm th}$, etc. depend <u>effectively only</u> on $m^*(T)$

Numerical results: linear correlations of S/A and e_{th} with $m^*(T)$ survive also beyond this limit; evolution of astro. simulations are expected to depend on $m^*(T)$

◄ ≣ ▶ < ≣ ▶</p>
April 26, 2024

21 / 25

э

Assuming that $\delta m^*(T) \approx 0$, Constantinou et al. [1] showed that p_{th} , μ_{th} depend on $q = m^{*2}/E_F^{*2}(1-3d\ln m^*/d\ln n)$:

$$p_{\rm th} = \frac{1}{3} an T^2 (1+q) + \mathcal{O}(T^4);$$
(1)

[1] Constantinou, Muccioli, Prakash & Lattimer, Ann.
 Phys. (2015)

verified in certain cases

Thermal pressure $p_{\rm th}$

22/25

Assuming that $\delta m^*(T) \approx 0$, Constantinou et al. [1] showed that p_{th} , μ_{th} depend on $q = m^{*2}/E_F^{*2}(1-3d\ln m^*/d\ln n)$:

$$\mu_{\rm th} = -\frac{2}{3} a T^2 \left(1 - \frac{q}{2} \right) + \mathcal{O}(T^4)$$

[1] Constantinou, Muccioli, Prakash & Lattimer, Ann.Phys. (2015)

Thermal chemical potential μ_{th}

verified in all these cases, incl. high

A. Raduta

Bayesian inference of thermal effects in de April 26, 2024

23/25

Т

Assuming that $\delta m^*(T) \approx 0$, Constantinou et al. [1] showed that p_{th} , μ_{th} depend on $q = m^{*2}/E_F^{*2}(1-3d\ln m^*/d\ln n)$:

$$\begin{split} p_{\mathrm{th}} &= \frac{1}{3} an T^2 \left(1 + q \right) + \mathcal{O}(T^4); \\ \Gamma_{\mathrm{th}} &= 1 + \frac{p_{\mathrm{th}}}{e_{\mathrm{th}}} \end{split}$$

[1] Constantinou, Muccioli, Prakash & Lattimer, Ann. Phys. (2015)

excellent scaling, including at high T

Thermal index Γ_{th}

- 10⁵ Covariant Density Functional EOS models built within a Bayesian approach are used to study finite-T effects in dense matter
- thermal quantities depend on the Dirac effective mass, with $e_{\rm th},~S/A$ being the most sensitive
 - $\bullet\,$ pseudo-Sommerfeld expansion explains the effect, which persists also at high T
- p_{th} , μ_{th} , Γ_{th} are strongly correlated with $q = m^{*2}/E_F^{*2}(1-3d\ln m^*/d\ln n)$ [Constantinou+, Ann.Phys. (2015)]
 - the effect persists also at high T and when $\delta m^*(T) \neq 0$
- numerical simulations of CCSN, BNS are expected to show m*-dependent evolutions
 - similarly to the case of Landau effective mass in non-relativistic models [Yasin+, PRL (2020); Schneider+, ApJ (2020)]]