Dense QCD equation of state: duality and implications from lattice QCD

References: [1] <u>Y. Fujimoto</u>, K. Fukushima, L. McLerran, M. Praszalowicz, PRL129 (2022) [2207.06753] [2] Y. Fujimoto, T. Kojo, L. McLerran, PRL132 (2024) [2306.04304] [3] Y. Fujimoto, S. Reddy, PRD 109 (2024) (Selected for Editors' suggestion) [2310.09427] [4] <u>Y. Fujimoto</u>, PRD109 (2024) [2312.11443]; to appear [2405.????]

26 April, 2024 - ECT* Workshop: The physics of strongly interacting matter

Yuki Fujimoto (University of Washington)

INSTITUTE for NUCLEAR THEORY

OCD equation of state (EoS)

Nuclear density: $n_0 = 0.16$ fm⁻³

Yuki Fujimoto (INT, U Washington)

Freedman, McLerran (1978); Kurkela, Romatschke, Vuorinen, Paatelainen, Seppänen+(2009-)

Baluni(1979); Gorda, Säppi,

"Uncertainty" in pQCD Freedman, McLerran (1978); Fraga, Pisarski, Schaffner-Bielich (2001)

$$P_{\rm pQCD}(\mu;\bar{\Lambda}) = \frac{3\mu^2}{4\pi^2} \left[1 - 2\frac{\alpha_s(\bar{\Lambda})}{\pi} - \left(2\ln\frac{\alpha_s(\bar{\Lambda})}{\pi} + \frac{29}{6}\ln\frac{\bar{\Lambda}^2}{(2\mu)^2} + 17.39 \right) \left(\frac{\alpha_s(\bar{\Lambda})}{\pi} \right)^2 + \mathcal{O}(\alpha_s^3) \right]$$

- $\overline{\Lambda}$: renormalization scale

- Canonical choice:
$$\bar{\Lambda}=2\mu$$
 (typ

- "Uncertainty" quantified by varying by factor 2 i.e. $X \in [1/2, 2]$ with $X \equiv \overline{\Lambda}/(2\mu)$

Yuki Fujimoto (INT, U Washington)

- ... only ambiguity in pQCD from perturbative series truncation
 - pical hard interaction scale)

 - ... ad hoc procedure, purely based on historical practice

Nuclear density: $n_0 = 0.16 \text{ fm}^{-3}$

Yuki Fujimoto (INT, U Washington)

Baluni(1979); Gorda, Säppi,

Nuclear density: $n_0 = 0.16$ fm⁻³

Yuki Fujimoto (INT, U Washington)

Freedman, McLerran (1978); Baluni(1979); Kurkela, Romatschke, Vuorinen, Gorda, Säppi, Paatelainen, Seppänen+(2009-)

Nuclear density: $n_0 = 0.16$ fm⁻³

Yuki Fujimoto (INT, U Washington)

Freedman, McLerran (1978); Kurkela, Romatschke, Vuorinen, Paatelainen, Seppänen+(2009-)

Baluni(1979); Gorda, Säppi,

Nuclear density: $n_0 = 0.16 \text{ fm}^{-3}$

Yuki Fujimoto (INT, U Washington)

Freedman, McLerran (1978); Kurkela, Romatschke, Vuorinen, Paatelainen, Seppänen+(2009-)

Baluni(1979); Gorda, Säppi,

Nuclear density: $n_0 = 0.16 \text{ fm}^{-3}$

Yuki Fujimoto (INT, U Washington)

Freedman, McLerran (1978); Kurkela, Romatschke, Vuorinen, Paatelainen, Seppänen+(2009-)

Baluni(1979); Gorda, Säppi,

The effect of pQCD on the EoS

Yuki Fujimoto (INT, U Washington)

central densities 10

Softening at high density

Annala et al.(2020); Gorda,Komoltsev,Kurkela(2022); Altiparmak, Ecker, Rezzola (2022); Fujimoto, Fukushima, McLerran, Praszalowicz (2022); Marczenko, McLerran, Redlich, Sasaki (2022)

cf. no softening

Somasundaram, Margueron, Tews (2022); Brandes, Weise, Kaiser (2023); ...

Disagreement? \rightarrow No. But, depends on the density up to which the EoS is modeled

Komoltsev, Somasundaram, Gorda, Kurkela, Margueron, Tews (2023)

QCD at finite isospin density

- No sign problem \rightarrow can be simulated on the lattice!
- Isospin chemical potential (conjugate to isospin density I_3): $\mu_u = \frac{\mu_I}{2}, \quad \mu_d = -\frac{\mu_I}{2} \dots$ Fermi surface of $u \& \bar{d}$
- Phase structure: Son, Stephanov (2000)

 \mathcal{M}_{π}

Yuki Fujimoto (INT, U Washington)

Alford, Kapustin, Wilczek (1999); Kogut, Sinclair (2002-); Beane, Detmold, Savage et al. (NPLQCD) (2007-); Endrodi et al. (2014-)...

> different from phase structure at finite baryon density

Cooper pairing BCS

QCD EoS at finite isospin density

Recent impact:

EoS is calculated up to $n_I \sim 180 n_{sat}$ by lattice QCD

Yuki Fujimoto (INT, U Washington)

Abbott et al. (NPLQCD collaboration) (2023)

1.

- b) Comparison with weak-coupling results
- 2. Duality and conformality in dense QCD Trace anomaly, Quarkyonic matter

Y. Fujimoto, T. Kojo, L. McLerran, PRL132 (2024); Y. Fujimoto, K. Fukushima, L. McLerran, M. Praszalowicz, PRL129 (2022)

Yuki Fujimoto (INT, U Washington)

Implications from lattice QCD at finite isospin density

a) Bounds on isospin symmetric EoS from QCD inequality

<u>Y. Fujimoto</u>, S. Reddy, PRD109 (2024)

<u>Y. Fujimoto</u>, PRD109 (2024); Y. Fujimoto, in preparation

1. Implications from lattice QCD at finite isospin density

a) Bounds on isospin symmetric EoS from QCD inequality

b) Comparison with weak-coupling results

Duality and conformality in dense QCD Trace anomaly, Quarkyonic matter

<u>Y. Fujimoto</u>, T. Kojo, L. McLerran, PRL132 (2024); <u>Y. Fujimoto</u>, K. Fukushima, L. McLerran, M. Praszalowicz, PRL129 (2022)

Yuki Fujimoto (INT, U Washington)

Y. Fujimoto, S. Reddy, PRD109 (2024)

Coupling results <u>Y. Fujimoto</u>, PRD109 (2024); <u>Y. Fujimoto</u>, in preparation

- QCD_I: QCD at finite μ_I and zero μ_B - QCD_B: QCD at finite μ_B and zero μ_I

Yuki Fujimoto (INT, U Washington)

$$\mathbf{QCD}_{I}: Z_{I}(\mu_{I}) = \int [dA] \det \mathcal{D}(\frac{\mu_{I}}{2}) \det \mathcal{D}(-\frac{\mu_{I}}{2}) e^{-S_{G}} = \int [dA] \left| \det \mathcal{D}(\frac{\mu_{I}}{2}) \right|^{2} e^{-S_{G}}$$

$$QCD_{B}: Z_{B}(\mu_{B}) = \int [dA] \det \mathscr{D}(\frac{\mu_{B}}{N_{c}}) \det \mathscr{D}(\frac{\mu_{B}}{N_{c}}) e^{-S_{G}} = \int [dA] \operatorname{Re}\left[\det \mathscr{D}(\frac{\mu_{B}}{N_{c}})\right]^{2} e^{-S_{G}}$$
Note: this is **isospin symmetric** because there is no isospin imbalance

- From the relation
$$\operatorname{Re} z^2 \le |z^2| = |z|^2$$
:

$$Z_B(\mu_B) \le \int [dA] \left| \det \mathcal{D}(\frac{\mu_B}{N_c}) \right|^2 e^{-S_G} = Z_I(\mu_I = \frac{2}{N_c}\mu_B)$$

OCD inequality Cohen (2003); Fujimoto, Reddy (2023); see also: Moore, Gorda (2023)

- Dirac operator: $\mathscr{D}(\mu) \equiv \gamma^{\mu} D_{\mu} + m - \mu \gamma^{0}$, property: det $\mathscr{D}(-\mu) = [\det \mathscr{D}(\mu)]^{*}$

 $-\mu_B$

- Take the log of the following inequality: $Z_R(\mu_R) \leq Z_R$

Yuki Fujimoto (INT, U Washington)

Cohen (2003); *Fujimoto*, Reddy (2023); see also: Moore, Gorda (2023)

$$T_I(\mu_I = \frac{2}{N_c}\mu_B)$$

Pressure of dense QCD₁ matter from lattice QCD)

Direct use of QCD inequality

Yuki Fujimoto (INT, U Washington)

Lattice data: Abbott et al. (2023); Fujimoto, Reddy (2023)

Direct use of QCD inequality

Yuki Fujimoto (INT, U Washington)

Lattice data: Abbott et al. (2023); Fujimoto, Reddy (2023)

Komoltsev, Kurkela (2021); Fujimoto, Reddy (2023)

Yuki Fujimoto (INT, U Washington)

Bounds on $n_R(\mu_R)$ **Properties** $n_B(\mu_B)$ **must satisfy**: Stability: $\frac{d^2 P}{d\mu_B^2} \ge 0 \implies \frac{dn_B}{d\mu_B} \ge 0$ ② Causality $v_s^2 \le 1$: $v_s^2 = \frac{n_B}{\mu_B} \frac{d\mu_B}{dn_B} \le 1 \implies \frac{dn_B}{d\mu_B} \ge \frac{n_B}{\mu_B}$ QCD inequality on the integral: $(\mathbf{3})$ $d\mu' n_B(\mu') \leq P_I(\mu_I = \frac{2}{N_c}\mu_B)$ $J \mu_{sat}$ 3000 Lower bound of the integral must be specified fix it to the **empirical saturation property**

Implications from lattice QCD at finite isospin density 1. a) Bounds on isospin symmetric EoS from QCD inequality

b) Comparison with weak-coupling results

2. Duality and conformality in dense QCD Trace anomaly, Quarkyonic matter

> Y. Fujimoto, T. Kojo, L. McLerran, PRL132 (2024); Y. Fujimoto, K. Fukushima, L. McLerran, M. Praszalowicz, PRL129 (2022)

Yuki Fujimoto (INT, U Washington)

<u>Y. Fujimoto</u>, S. Reddy, PRD109 (2024)

Y. Fujimoto, PRD109 (2024)

Y. Fujimoto, in preparation

Applicability of weak-coupling results?

Bulk pQCD thermodynamics in weak-coupling α_s expansion:

$$P_{pQCD}(\mu) = \frac{3\mu^2}{4\pi^2} \left[1 - 2\frac{\alpha_s}{\pi} - \left(2\ln\frac{\alpha_s}{\pi} + \frac{29}{6}\ln\frac{\bar{\Lambda}^2}{(2\mu)^2} + 17.39 \right) \left(\frac{\alpha_s}{\pi} \right)^2 + \mathcal{O}(\alpha_s^3) \right]$$

($N_c = 3, N_f = 0$
- Convergence seems to be good up to $\mathcal{O}(\alpha_s^2)$

- Valid down to $\mu \sim 10^{\circ}$ MeV?

\rightarrow Lattice QCD₇ can be used as benchmark

Yuki Fujimoto (INT, U Washington)

Freedman, McLerran (1978); Baluni (1979); Kurkela, Romatschke, Vuorinen, Gorda, Säppi, Paatelainen, Seppänen+ (2009-)

- Universal for QCD_B and QCD_I up to $\mathcal{O}(\alpha_s^2)$ Moore, Gorda (2023); Navarette, Paatelainen, Seppänen (2024)

Condensation energy

Difference in pressure w/ and w/o the gap formation: $\delta P \equiv P(\Delta \neq 0) - P(\Delta = 0)$

Weak-coupling expression up to next-to-leading order:

$$\delta P = \frac{3\mu^2}{2\pi^2} \Delta^2 \left[1 + \frac{\pi}{3} \left(\frac{\alpha_s}{\pi} \right)^{1/2} \right] \dots \text{ condensation energy}$$

D.o.S Pairing gap, weak-coupling formula

Yuki Fujimoto (INT, U Washington)

e.g. Alford, Rajagopal, Schafer, Schmitt (2008); Fujimoto (2023)

Contribution of the Cooper pairing gap to bulk thermodynamics (pressure)

Cooper pairing gap in weak coupling

- Color-superconducting gap up to next to leading order: $\ln\left(\frac{\Delta}{\mu}\right) = -\frac{\sqrt{3}\pi}{2\sqrt{c_R}}\left(\frac{\alpha_s}{\pi}\right)^{-\frac{1}{2}} - \frac{5}{2}$

 - ... this formula is also universal for QCD_R (color superconductivity) and QCD_I (pion condensation-like Cooper pairing) Fujimoto (2023) \rightarrow Lattice QCD_I can also be used as benchmark

Son (1998); Schäfer, Wilczek (1999); Pisarski, Rischke (1999); Brown, Liu, Ren (1999); Wang, Rischke (2001); ...

$$\ln\left(N_{f}\frac{\alpha_{s}}{\pi}\right) + \ln\frac{2^{\frac{13}{2}}}{\pi} - \frac{\pi^{2} + 4}{12c_{R}} - \zeta + \mathcal{O}(\alpha)$$

 $c_R = 2/3$ for $\mathbf{\bar{3}}$, $c_R = 4/3$ for $\mathbf{1}$ channel, $\zeta = \frac{1}{3} \ln 2$ for CFL, $\zeta = 0$ otherwise

Cooper pairing gap in weak coupling

- Color-superconducting gap up to next to leading order:

$$\ln\left(\frac{\Delta}{\mu}\right) = -\frac{\sqrt{3}\pi}{2\sqrt{c_R}} \left(\frac{\alpha_s}{\pi}\right)^{-\frac{1}{2}} - \frac{5}{2}\ln\left(N_f\frac{\alpha_s}{\pi}\right) + \ln\frac{2^{\frac{13}{2}}}{\pi} - \frac{\pi^2 + 4}{12c_R} - \zeta + \mathcal{O}(\alpha)$$

- **Pros and cons for the applicability: Con** \square : - Folklore — only applicable at very large μ

Yuki Fujimoto (INT, U Washington)

Son (1998); Schäfer, Wilczek (1999); Pisarski, Rischke (1999); Brown, Liu, Ren (1999); Wang, Rischke (2001); ...

 $c_R = 2/3$ for $\mathbf{\bar{3}}$, $c_R = 4/3$ for $\mathbf{1}$ channel, $\zeta = \frac{1}{3} \ln 2$ for CFL, $\zeta = 0$ otherwise

e.g. $\mu \sim 10^8 \text{ MeV}$ [Rajagopal, Shuster (2000)]

Pros \square : - Standard pQCD (e.g. collider pheno) is valid down to $\mu \sim 10^3$ MeV - Derivation of Δ is valid as long as $\Delta \ll m_{\rm D} \ll \mu$ (scale separation)

2.00 1.75 1.50 Pressure P/Pid .25 LatticeQC .00 0.75 Bulk pQCD 0.50

0.25 0.00 1.6 1.8 2.0

Yuki Fujimoto (INT, U Washington)

Is the gap Δ the only correction?

 $P = a_4 \mu$

- a_{4} : Ideal gas behavior + pQCD correction (Dominant)
- a_2 : Gap correction $a_2 \propto \Delta$ Quark mass $a_2 \propto -m_1^2$ Temperature $a_2 \propto T^2$ (small, ~1%)
- B: Bag constant, typically E Instantons, suppressed

Shuryak; Kallman; Abrikosov; de Carvalho; Chemtob; Baluni (late 70s - early 80s)

Yuki Fujimoto (INT, U Washington)

Alford, Braby, Paris, Reddy (2004)

$$a^4 + a_2 \mu^2 - B$$

$$\Delta^2$$
 (large, ~20-200%),
 p_f^2 (small, ~1%)

$$B^{1/4} \simeq 200 \text{ MeV} \text{ (small, ~0.5\%)}$$

H by $\frac{m_f}{\Lambda_{\text{OCD}}} \sim 10^{-3}$

Weak-coupling Cooper pairing gap formula is reliable down to $\mu \sim 10^3 {
m ~MeV}$

$$\Delta_{\mathrm{CFL}} \sim 2-3 \,\,\mathrm{MeV}$$
 at $\mu = 800 \,\,\mathrm{MeV}$

- A negligibly small contribution to bulk thermodynamics
- Comparable to the stress by strange quark mass: $\Delta_{\rm CFL} \sim m_{\rm s}^2/4\mu$ \rightarrow CFL may not be the ground state?

Prescription for Λ **determination** Fujimoto, in prep. (2024)

Yuki Fujimoto (INT, U Washington)

Prescription for $\bar{\Lambda}$ determination <u>Fujimoto, in prep. (2024)</u>

Yuki Fujimoto (INT, U Washington)

New prescription: Matching $\overline{\Lambda}$ to lattice QCD_I uncertainty $X \in [0.64, 0.95]$

Conventional choice for $\bar{\Lambda}$ $X = \bar{\Lambda}/2\mu \in [1/2,2]$

ttice QCD QCD $P_{pQCD} + \delta P$ $P_{pQCD} + \delta P$ (Canonical scale setting: $X \in [0.5, 2]$) $P_{pQCD} + \delta P$ (Fit w/ lattice QCD: $X \in [0.64, 0.95]$) 1000 1200 1400 1600 Quark chemical potential μ [MeV]

Already calculated

Yuki Fujimoto (INT, U Washington)

Calculable w/o the sign problem

Summary of Part 1

- Matched uncertainty w/lattice QCD₁ data

pQCD - Color-superconducting gap Δ negligible

Lower bound from lattice QCD (NB: $N_f = 2$ SNM)

Density n_B $30 \, n_0$

Implications from lattice QCD at finite isospin density 1. a) Bounds on isospin symmetric EoS from QCD inequality

b) Comparison with weak-coupling results

2. Duality and conformality in dense QCD Trace anomaly, Quarkyonic matter Y. Fujimoto, T. Kojo, L. McLerran, PRL132 (2024); Y. Fujimoto, K. Fukushima, L. McLerran, M. Praszalowicz, PRL129 (2022)

Yuki Fujimoto (INT, U Washington)

<u>Y. Fujimoto</u>, S. Reddy, PRD109 (2024)

<u>Y. Fujimoto</u>, PRD109 (2024); Y. Fujimoto, in preparation

Conformal limit

Trace anomaly: $\varepsilon - 3P$

Sound speed:
$$v_s^2 = \frac{dP}{d\varepsilon}$$

Yuki Fujimoto (INT, U Washington)

Weak coupling limit $\alpha_{s} \rightarrow 0$ is achieved when $\varepsilon \rightarrow \infty$. The pQCD EoS has properties in this **conformal limit** as:

$$\sim \beta_0 \mu^4 \left(\frac{\alpha_s}{\pi}\right)^2 \to 0$$

$$\sim \frac{1}{3} \frac{1}{1 + \beta_0 \left(\frac{\alpha_s}{\pi}\right)^2} \to \frac{1}{3}$$

At the intermediate density, $\varepsilon - 3P = 0$ and $v_s^2 = 1/3$ are different conditions

Trace anomaly and effective d.o.f. Y. Fujimoto, K. Fukushima, L. McLerran, M. Praszalowicz, PRL129 (2022)

- Trace anomaly: related to the changes in the effective degrees of freedom ν $\varepsilon - 3P$ $d\nu$ P_{ideal} $d \ln \mu$ $(P = \nu P_{\text{ideal}})$

- $\nu \sim 1$ in quark matter regime
- If ν increases: positive trace anomaly if ν decreases: negative trace anomaly

Yuki Fujimoto (INT, U Washington)

w/o using pQCD information:

Trace anomaly and effective d.o.f. Y. Fujimoto, K. Fukushima, L. McLerran, M. Praszalowicz, PRL129 (2022)

- Trace anomaly: related to the changes in the effective degrees of freedom ν $\varepsilon - 3P$ d
uP_{ideal} $d \ln \mu$ $(P = \nu P_{\text{ideal}})$

- $\nu \sim 1$ in quark matter regime
- If ν increases: positive trace anomaly if ν decreases: negative trace anomaly

Positive trace anomaly favored by QCD effect

Yuki Fujimoto (INT, U Washington)

w/ using pQCD information:

Normalized trace anomaly: $(\varepsilon - 3P)/3\varepsilon$

Yuki Fujimoto (INT, U Washington)

Trace anomaly and peak in sound speed Y. Fujimoto, K. Fukushima, L. McLerran, M. Praszalowicz, PRL129 (2022)

Quarkyonic matter: EoS model for neutron star

Yuki Fujimoto (INT, U Washington)

This EoS model was derived by

This talk: reinterpretation of this result

Central tenet of Quarkyonic matter

Naive picture of deconfinement at high density: ^{Collins,Perry (1974)}
 In weak-coupling regime, quarks are deconfined
 Led by Debye screening of the confinement potential

Quarkyonic matter: Large-N_c QCD implies... McLerran, Pisarski (2007)
 Dense QCD matter at high density can be described either as
 Confined baryons (because confining interaction is less screened)
 (weakly-coupled) Quarks

\rightarrow implies duality between <u>quark</u> and confined baryonic matter

Duality in Fermi gas model

Implement duality in Fermi gas model (= simultaneous description in terms of baryons & quarks)

Fermi gas model w/ an explicit duality: $\varepsilon = \int_{k} E_{\mathrm{B}}(k) f_{\mathrm{B}}(k) = \int_{k} E_{\mathrm{Q}}(q) f_{\mathrm{Q}}(q)$ $n_{\rm B} = \int_k f_{\rm B}(k) = \int_a f_{\rm Q}(q)$

Modeling of confinement: $f_{\mathbf{Q}}(q) = \int_{k} \varphi \left(q - \frac{k}{N_{\mathbf{Q}}} \right) f_{\mathbf{B}}(k)$

Yuki Fujimoto (INT, U Washington)

Fujimoto, Kojo, McLerran (2023)

 $0 \le f_{B,Q} \le 1$: Pauli exclusion $E_{\rm B}(k) = \sqrt{k^2 + M_N^2}$: ideal baryon dispersion relation

Fujimoto, Kojo, McLerran (2023)

At sufficiently high density...

Yuki Fujimoto (INT, U Washington)

Fujimoto, Kojo, McLerran (2023)

McLerran-Reddy model of the EoS based on the McLerran-Pisarski shell picture

Rapid stiffening in the EoS

A partial occupation of available baryon phase space leads to large sound speed:

$$v_s^2 = \frac{n_{\rm B}}{\mu_{\rm B} dn_{\rm B}/d\mu_{\rm B}} \rightarrow \frac{\delta\mu_{\rm B}}{\mu_{\rm B}} \sim v_s^2 \frac{\delta n_{\rm B}}{n_{\rm B}}$$

If baryons have underoccupied state, the change in density is small while the change in Fermi energy ($\sim k_F$) is large

- QCD_I: a testing ground for QCD_R. Lattice simulation feasible
- QCD inequality: Robust constraints on the symmetric nuclear matter EoS from lattice QCD & saturation property
- Weak-coupling results: Matches well with lattice QCD₁. Empirical evidence for the validity down to $\mu \sim 10^3$ MeV. Color-superconducting gap negligible at $\mu \sim 800$ MeV, Crosscheck with lattice-QCD can be provided in $N_c = 2$.

- Quarkyonic matter: reinterpretation as a hadron-quark duality

Yuki Fujimoto (INT, U Washington)

