Dynamics in the inner crust: heavy impurity in Fermi superfluid

Daniel Pęcak

Agata Zdanowicz, Nicolas Chamel Piotr Magierski, Gabriel Wlazłowski

 $25^{\rm th}$ April 2024, ECT*, Trento

Crust composition

$\rho_{\rm max} [{\rm g} {\rm cm}^{-3}]$	Element	Ζ	Ν	$R_{\rm cell}$ [fm]	$\rho \; [{\rm g \; cm^{-3}}]$	Element	Z	N	$R_{\rm cell}$ [fm]
1000000000000000000000000000000000000	$56 F_{O}$	26	30	1404.05	4.67×10^{11}	$^{180}\mathrm{Zr}$	40	140	53.60
3.02×10 2.71×10^{8}	62Ni	20	34	1404.05	$6.69 imes 10^{11}$	$^{200}\mathrm{Zr}$	40	160	49.24
1.33×10^9	64Ni	20	36	266.97	1.00×10^{12}	$^{250}\mathrm{Zr}$	40	210	46.33
1.50×10^{9}	66Ni	28	38	259.26	1.47×10^{12}	$^{320}\mathrm{Zr}$	40	280	44.30
3.09×10^9	86 Kr	36	50	233.20 222.66	2.66×10^{12}	$^{500}\mathrm{Zr}$	40	460	42.16
1.06×10^{10}	⁸⁴ Se	34	50	146.56	$6.24 imes 10^{12}$	950 Sn	50	900	39.32
2.79×10^{10}	82 Ge	32	50	105.23	$9.65 imes10^{12}$	1100 Sn	50	1050	35.70
6.07×10^{10}	⁸⁰ Zn	30	50	80.58	1.49×10^{13}	1350 Sn	50	1300	33.07
0.40.1010	827				3.41×10^{13}	1800 Sn	50	1750	27.61
8.46×10^{10}	°2′Zn	30	52	72.77	7.94×10^{13}	$^{1500}\mathrm{Zr}$	40	1460	19.61
9.67×10^{10}	¹² °Pd	46	82	80.77	1.32×10^{14}	982 Ge	32	950	14.38
1.47×10^{11}	120 Ru	44	82	69.81					
2.11×10^{11}	^{124}Mo	42	82	61.71					
2.89×10^{11}	122 Zr	40	82	55.22					
3.97×10^{11}	120 Sr	38	82	49.37					
4.27×10^{11}	118 Kr	36	82	47.92					

Chamel, Nicolas, and Pawel Haensel. "Physics of neutron star crusts." Living Reviews in relativity 11.1 (2008): 1-182.

LUMI, Finland (#5 Top 500)

Piz Daint, Switzerland (#37 Top 500)

LUMI, Finland (#5 Top 500)

Piz Daint, Switzerland (#37 Top 500)

R. Hänninen, A. W. Baggaley, Proc. Nat. Acad. Sci. U.S.A. 111, 4667 (2014)

Varsaw University V-SLDA Toolkit of Technology V-BSk Toolkit

W-SLDA Toolkit

Self-consistent solver of mathematical problems which have structure formally equivalent to Bogoliubov-de Gennes equations.

$$\begin{pmatrix} h_a(\boldsymbol{r}) - \mu_a & \Delta(\boldsymbol{r}) \\ \Delta^*(\boldsymbol{r}) & -h_b^*(\boldsymbol{r}) + \mu_b \end{pmatrix} \begin{pmatrix} u_n(\boldsymbol{r}) \\ v_n(\boldsymbol{r}) \end{pmatrix} = E_n \begin{pmatrix} u_n(\boldsymbol{r}) \\ v_n(\boldsymbol{r}) \end{pmatrix}$$

static problems: st-wslda

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix}u_n(\boldsymbol{r},t)\\v_n(\boldsymbol{r},t)\end{pmatrix} = \begin{pmatrix}h_a(\boldsymbol{r},t)-\mu_a & \Delta(\boldsymbol{r},t)\\\Delta^*(\boldsymbol{r},t) & -h_b^*(\boldsymbol{r},t)+\mu_b\end{pmatrix}\begin{pmatrix}u_n(\boldsymbol{r},t)\\v_n(\boldsymbol{r},t)\end{pmatrix}$$

Changelog

» Contributing to M-SIDA

$$\varepsilon(\rho, \vec{\nabla}\rho, \nu, \tau, \mathbf{j}) = \frac{\hbar^2}{2M} \tau + \varepsilon_{\rho}(\rho) + \varepsilon_{\tau}(\rho, \tau, \mathbf{j}) + \varepsilon_{\Delta\rho}(\rho, \vec{\nabla}\rho) + \varepsilon_{\pi}(\rho, \vec{\nabla}\rho, \nu)$$

$$\varepsilon(\rho, \vec{\nabla}\rho, \nu, \tau, \mathbf{j}) = \frac{\hbar^2}{2M} \tau + \varepsilon_{\rho}(\rho) + \varepsilon_{\tau}(\rho, \tau, \mathbf{j}) + \varepsilon_{\Delta\rho}(\rho, \vec{\nabla}\rho) + \varepsilon_{\pi}(\rho, \vec{\nabla}\rho, \nu)$$

$$\rho(r) = \sum_{k} |v_k(r)|^2$$

$$\tau(r) = \sum_{k} |\nabla v_k(r)|^2$$

$$\nu(r) = \sum_{k} u_k(r) v_k^*(r)$$

$$\varepsilon(\rho, \vec{\nabla}\rho, \nu, \tau, \mathbf{j}) = \frac{\hbar^2}{2M} \tau + \varepsilon_{\rho}(\rho) + \varepsilon_{\tau}(\rho, \tau, \mathbf{j}) + \varepsilon_{\Delta\rho}(\rho, \vec{\nabla}\rho) + \varepsilon_{\pi}(\rho, \vec{\nabla}\rho, \nu)$$

$$\rho(r) = \sum_{k} |v_k(r)|^2$$

$$\tau(r) = \sum_{k} |\nabla v_k(r)|^2$$

$$\nu(r) = \sum_{k} u_k(r) v_k^*(r)$$

$$h(r) = \frac{\delta\varepsilon}{\delta\rho} - \nabla \frac{\delta\varepsilon}{\delta\tau} \nabla - \frac{i}{2} \left\{ \frac{\delta\varepsilon}{\delta j}, \nabla \right\}$$
$$\Delta(r) = \frac{\delta\varepsilon}{\delta\nu}$$

Superfluid Local Density Approximation

A. Bulgac, Physical Review A 76, 040502 (2007)

$$\varepsilon(\rho, \vec{\nabla}\rho, \nu, \tau, \mathbf{j}) = \frac{\hbar^2}{2M} \tau + \varepsilon_{\rho}(\rho) + \varepsilon_{\tau}(\rho, \tau, \mathbf{j}) + \varepsilon_{\Delta\rho}(\rho, \vec{\nabla}\rho) + \varepsilon_{\pi}(\rho, \vec{\nabla}\rho, \nu)$$

$$\rho(r) = \sum_{k} |v_k(r)|^2$$

$$\tau(r) = \sum_{k} |\nabla v_k(r)|^2$$

$$\nu(r) = \sum_{k} u_k(r) v_k^*(r)$$

$$h(r) = \frac{\delta\varepsilon}{\delta\rho} - \nabla \frac{\delta\varepsilon}{\delta\tau} \nabla - \frac{i}{2} \left\{ \frac{\delta\varepsilon}{\delta j}, \nabla \right\}$$
$$\Delta(r) = \frac{\delta\varepsilon}{\delta\nu}$$

Superfluid Local Density Approximation

A. Bulgac, Physical Review A 76, 040502 (2007)

Hartree-Fock-Bogoliubov equations $\begin{pmatrix} h(r) & \Delta(r) \\ \Delta^{*}(r) & -h^{*}(r) \end{pmatrix} \begin{pmatrix} u_{k}(r) \\ v_{k}(r) \end{pmatrix} = \epsilon_{k} \begin{pmatrix} u_{k}(r) \\ v_{k}(r) \end{pmatrix}$

$$\varepsilon(\rho, \vec{\nabla}\rho, \nu, \tau, \mathbf{j}) = \frac{\hbar^2}{2M} \tau + \varepsilon_{\rho}(\rho) + \varepsilon_{\tau}(\rho, \tau, \mathbf{j}) + \varepsilon_{\Delta\rho}(\rho, \vec{\nabla}\rho) + \varepsilon_{\pi}(\rho, \vec{\nabla}\rho, \nu)$$

$$\rho(r) = \sum_{k} |v_k(r)|^2$$

$$\tau(r) = \sum_{k} |\nabla v_k(r)|^2$$

$$\nu(r) = \sum_{k} u_k(r) v_k^*(r)$$

$$h(r) = \frac{\delta\varepsilon}{\delta\rho} - \nabla \frac{\delta\varepsilon}{\delta\tau} \nabla - \frac{i}{2} \left\{ \frac{\delta\varepsilon}{\delta j}, \nabla \right\}$$
$$\Delta(r) = \frac{\delta\varepsilon}{\delta\nu}$$

Superfluid Local Density Approximation

A. Bulgac, Physical Review A 76, 040502 (2007)

Hartree-Fock-Bogoliubov equations $\begin{pmatrix} h(r) & \Delta(r) \\ \Delta^{*}(r) & -h^{*}(r) \end{pmatrix} \begin{pmatrix} u_{k}(r) \\ v_{k}(r) \end{pmatrix} = \epsilon_{k} \begin{pmatrix} u_{k}(r) \\ v_{k}(r) \end{pmatrix}$

Quality of results highly depends on the quality of density functional! $_{_{9/18}}$

1. Energy density

Under the assumption of invariance under time reversal, the HFB energy is written as the integral of a purely local energy-density functional

$$E_{\rm HFB} = \int \mathcal{E}_{\rm HFB}(\boldsymbol{r}) \,\mathrm{d}^3 \boldsymbol{r}, \qquad (A1)$$

where

$$\begin{aligned} \mathcal{E}_{\text{HFB}}(\boldsymbol{r}) &= \mathcal{E}_{\text{Sky}}[\rho_n(\boldsymbol{r}), \nabla \rho_n(\boldsymbol{r}), \tau_n(\boldsymbol{r}), \mathbf{J}_n(\boldsymbol{r}), \rho_p(\boldsymbol{r}), \nabla \rho_p(\boldsymbol{r}), \\ \tau_p(\boldsymbol{r}), \mathbf{J}_p(\boldsymbol{r})] + \mathcal{E}_{\text{Coul}}[\rho_p(\boldsymbol{r})] \\ &+ \mathcal{E}_{\text{pair}}[\rho_n(\boldsymbol{r}), \tilde{\rho}_n(\boldsymbol{r}), \rho_p(\boldsymbol{r}), \tilde{\rho}_p(\boldsymbol{r})]. \end{aligned}$$
(A2)

The first term here, the energy density for the Skyrme force of this paper, is given by

$$\begin{split} \mathcal{E}_{\text{Sky}} &= \sum_{q=n,\rho} \frac{\hbar^2}{2M_q} \tau_q + \frac{1}{2} t_0 \bigg[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(\frac{1}{2} + x_0 \right) \sum_{q=n,\rho} \rho_q^2 \bigg] + \frac{1}{4} t_1 \bigg\{ \left(1 + \frac{1}{2} x_1 \right) \bigg[\rho \tau + \frac{3}{4} (\nabla \rho)^2 \bigg] \\ &- \left(\frac{1}{2} + x_1 \right) \sum_{q=n,\rho} \bigg[\rho_q \tau_q + \frac{3}{4} (\nabla \rho_q)^2 \bigg] \bigg\} + \frac{1}{4} t_2 \bigg\{ \left(1 + \frac{1}{2} x_2 \right) \bigg[\rho \tau - \frac{1}{4} (\nabla \rho)^2 \bigg] + \left(\frac{1}{2} + x_2 \right) \bigg\} \\ &\times \sum_{q=n,\rho} \bigg[\rho_q \tau_q - \frac{1}{4} (\nabla \rho_q)^2 \bigg] \bigg\} + \frac{1}{12} t_3 \rho^a \bigg[\left(1 + \frac{1}{2} x_3 \right) \rho^2 - \left(\frac{1}{2} + x_3 \right) \sum_{q=n,\rho} \rho_q^2 \bigg] \\ &+ \frac{1}{4} t_4 \bigg\{ \bigg(1 + \frac{1}{2} x_4 \bigg) \bigg[\rho \tau + \frac{3}{4} (\nabla \rho)^2 \bigg] - \left(\frac{1}{2} + x_4 \right) \sum_{q=n,\rho} \bigg[\rho_q \tau_q + \frac{3}{4} (\nabla \rho_q)^2 \bigg] \bigg\} \rho^\beta \\ &+ \frac{\beta}{8} t_4 \bigg[\left(1 + \frac{1}{2} x_4 \right) \rho (\nabla \rho)^2 - \left(\frac{1}{2} + x_4 \right) \nabla \rho \cdot \sum_{q=n,\rho} \rho_q \nabla \rho_q \bigg] \rho^{\beta-1} + \frac{1}{4} t_5 \bigg\{ \bigg(1 + \frac{1}{2} x_5 \bigg) \bigg[\rho \tau - \frac{1}{4} (\nabla \rho)^2 \bigg] \\ &+ \bigg(\frac{1}{2} + x_5 \bigg) \sum_{q=n,\rho} \bigg[\rho_q \tau_q - \frac{1}{4} (\nabla \rho_q)^2 \bigg] \bigg\} \rho^\gamma - \frac{1}{16} (t_1 x_1 + t_2 x_2) J^2 + \frac{1}{16} (t_1 - t_2) \sum_{q=n,\rho} J_q^2 \\ &- \frac{1}{16} (t_4 x_4 \rho^\beta + t_5 x_5 \rho^\gamma) J^2 + \frac{1}{16} (t_4 \rho^\beta - t_5 \rho^\gamma) \sum_{q=n,\rho} J_q^2 + \frac{1}{2} W_0 \bigg(J \cdot \nabla \rho + \sum_{q=n,\rho} J_q \cdot \nabla \rho_q \bigg). \end{split}$$
(A3)

Brussels-Montreal (BSk) functional

Experimental data

- atomic masses
- nuclear charge radii
- symmetry energy
- incompressibility

Brussels-Montreal (BSk) functional **N-body calculations Experimental data**

- atomic masses
- nuclear charge radii
- symmetry energy
- incompressibility

- EoS of pure neutron matter
- ${}^{1}S_{0}$ pairing gaps in nuclear matter
- effective masses in nuclear matter

Chamel et al., Phys. Rev. C 80, 065804 (2009) Goriely et al., Phys. Rev. Lett. 102, 152503 (2009) Goriely et al., Phys. Rev. C 93, 034337 (2016)

Brussels-Montreal (BSk) functional **N-body calculations Experimental data**

- atomic masses
- nuclear charge radii
- symmetry energy
- incompressibility

- EoS of pure neutron matter
- ${}^{1}S_{0}$ pairing gaps in nuclear matter
- effective masses in nuclear matter

Chamel et al., Phys. Rev. C 80, 065804 (2009) Goriely et al., Phys. Rev. Lett. 102, 152503 (2009) Goriely et al., Phys. Rev. C 93, 034337 (2016)

$$\varepsilon(\rho_q, \vec{\nabla}\rho_q, \nu_q, \tau_q, \boldsymbol{j}_q)$$

$$v_z = a_z t$$

 $M_{eff}^{(d)} = rac{F}{a_z}$

$$v_z = a_z t$$

 $M_{eff}^{(d)} = rac{F}{a_z}$

$$v_z = a_z t$$

 $M_{eff}^{(d)} = rac{F}{a_z}$

$$v_L = rac{\Delta}{\hbar k_F}$$
 $v_{
m crit} = rac{e}{2} rac{\Delta}{\hbar k_F}$

$$v_{\rm vr} = \frac{1}{2\pi R} \frac{\hbar c}{M_n c^2} \left(\ln \frac{8R}{a_{\rm core}} - \alpha \right)$$

Summary

- fully self-consistent 3D (TD)HFB calculations
- BSk31 Energy Density Functional
- effective parameters can be extracted
- effective mass
- dissipation channels
- creating vortex rings
- giant dipole resonance

arxiv:2403.17499

Thank you!