One- and many-body physics with box-trapped Bose gases

far-from-equilibrium dynamics

Christoph Eigen

ECT Workshop, Trento The physics of strongly interacting matter April 25th, 2024 Bose polarons

RSITY OF BRIDGE

Introduction

systems far from equilibrium

many interacting components

superfluid helium

nuclear physics

small

Christoph Eigen

in the quantum realm...

high $T_{\rm c}$ superconductors

just plain hard

neutron stars

far

Introduction

systems far from equilibrium

many interacting components

helium

Christoph Eigen

Why ultracold atoms?

Christoph Eigen

temperature scale (logarithmic)

atoms move at

~ I mm/s

Christoph Eigen

Why ultracold atoms?

~ 100 m/s

~ 100 km/s

Cambridge to Trento in ~10 s

temperature scale (logarithmic)

Christoph Eigen

Why ultracold atoms?

quantum system

ultracold ³⁹K Bose gas in a box

review: N. Navon *et al.*, Nat. Phys. 17, 1334 (2021)

optical box

A. L. Gaunt *et al.*, PRL **110**, 200406 (2013) C. Eigen *et al.*, PRX **6**, 041058 (2016)

Christoph Eigen

ultracold ³⁹K Bose gas in a box

review: N. Navon *et al.*, Nat. Phys. 17, 1334 (2021)

optical box

A. L. Gaunt *et al.*, PRL **110**, 200406 (2013) C. Eigen *et al.*, PRX **6**, 041058 (2016)

Christoph Eigen

three relevant length scales

scattering length

small print: the 3-body length scale R_0 (set by Efimov physics) is another potentially relevant length scale, as well as the finite box size L

review: N. Navon *et al.*, Nat. Phys. 17, 1334 (2021)

optical box

A. L. Gaunt *et al.*, PRL **110**, 200406 (2013) C. Eigen *et al.*, PRX **6**, 041058 (2016)

Christoph Eigen

tuneable s-wave interactions using Feshbach resonances rich landscapes in ³⁹K

review: N. Navon *et al.*, Nat. Phys. **17**, 1334 (2021)

optical box

A. L. Gaunt *et al.*, PRL **110**, 200406 (2013)C. Eigen *et al.*, PRX **6**, 041058 (2016)

Christoph Eigen

review: N. Navon et al., Nat. Phys. 17, 1334 (2021)

optical box

A. L. Gaunt *et al.*, PRL **110**, 200406 (2013) C. Eigen *et al.*, PRX **6**, 041058 (2016)

Christoph Eigen

tuneable s-wave interactions using Feshbach resonances rich landscapes in ³⁹K

many-body

spin-state-based interaction switches

 a_{11}, a_{22}

quantum mixtures a_{11}, a_{22}, a_{12}

polarons

+...

droplets

atom matters! (not just m...)

review: N. Navon et al., Nat. Phys. 17, 1334 (2021)

optical box

A. L. Gaunt *et al.*, PRL **110**, 200406 (2013) C. Eigen *et al.*, PRX **6**, 041058 (2016)

Christoph Eigen

tuneable s-wave interactions using Feshbach resonances rich landscapes in ³⁹K

spin-state-based interaction switches

 a_{11}, a_{22}

 quantum mixtures a_{11}, a_{22}, a_{12}

polarons

+...

droplets

+ Efimov physics

Efimov trimers quantum mechanical analogue of Borromean rings

How does it look in practice?

Christoph Eigen

How does it look in practice?

Christoph Eigen

How does it look in practice?

0

Christoph Eigen

Talk outline

I. Subdiffusive dynamic scaling in a driven disordered Bose gas G. Martirosyan et al. PRL **132**, 113401 (2024) Y. Zhang et al. C. R. Phys. 24 [online first] (2023)

2. Bose polarons in box

J. Etrych et al. arXiv:2402.14816 (2024)

Christoph Eigen

Talk outline

I. Subdiffusive dynamic scaling in a driven disordered Bose gas G. Martirosyan et al. PRL **132**, 113401 (2024) Y. Zhang et al. C. R. Phys. 24 [online first] (2023)

2. Bose polarons in box

J. Etrych et al. arXiv:2402.14816 (2024)

Christoph Eigen

Matter-wave fluid dynamics

Nonlinear Schrödinger equation with cubic nonlinearity (Gross-Pitaevskii Equation)

Shaken, not stirred

ultracold ³⁹K Bose gas in a box

review: N. Navon *et al.*, Nat. Phys. 17, 1334 (2021)

optical box

A. L. Gaunt *et al.*, PRL **110**, 200406 (2013) C. Eigen *et al.*, PRX **6**, 041058 (2016)

Christoph Eigen

Shaken interacting homogeneous Bose gases

also at nonzero T In 2D: P. Christodoulou et al., Nature 594, 191 (2021) *In 3D:* T. A. Hilker *et al.*, PRL **128**, 223601 (2022)

Bogoliubov sound waves

single-particle excitations \rightarrow sound waves S. Garratt *et al.*, PRA **99**, 021601(R) (2019)

excitation amplitude, $U_{\rm s}$ (× $t_{\rm s}$)

Christoph Eigen

Shaken interacting homogeneous Bose gases

also at nonzero T *In 2D:* P. Christodoulou *et al.*, Nature **594**, 191 (2021) *In 3D:* T. A. Hilker *et al.*, PRL **128**, 223601 (2022)

Bogoliubov sound waves

single-particle excitations \rightarrow sound waves S. Garratt *et al.*, PRA **99**, 021601(R) (2019)

first-step: many-body decay

J. Zhang et al., PRL **126**, 060402 (2021) also in 2D M. Gałka et al., PRL 129, 190402 (2022)

excitation amplitude, $U_{\rm s}~(\times t_{\rm s})$

Christoph Eigen

Route to turbulence

also at nonzero T *In 2D:* P. Christodoulou *et al.*, Nature **594**, 191 (2021) *In 3D:* T. A. Hilker *et al.*, PRL **128**, 223601 (2022)

Bogoliubov sound waves

single-particle excitations \rightarrow sound waves S. Garratt *et al.*, PRA **99**, 021601(R) (2019)

first-step: many-body decay

Christoph Eigen

excitation amplitude, $U_{\rm s}~(\times t_{\rm s})$

also at nonzero T *In 2D:* P. Christodoulou *et al.*, Nature **594**, 191 (2021) In 3D: T. A. Hilker et al., PRL 128, 223601 (2022)

Bogoliubov sound waves

single-particle excitations \rightarrow sound waves S. Garratt *et al.*, PRA **99**, 021601(R) (2019)

first-step: many-body decay

Christoph Eigen

excitation amplitude, U_{s} (× t_{s})

What happens in the absence of interactions?

Particle in a box

can turn off interactions!

³⁹K in $|1,1\rangle$ at the B = 350.4(1)Gzero crossing $(a \rightarrow 0)$

cylindrical box ($L \approx 50 \mu m$ and $R \approx 15 \mu m$)

Christoph Eigen

F_c

can turn off interactions!

³⁹K in $|1,1\rangle$ at the B = 350.4(1)Gzero crossing ($a \rightarrow 0$)

cylindrical box ($L \approx 50 \mu m$ and $R \approx 15 \mu m$)

lowest-lying axial excitation $\omega_K = (\varepsilon_1 - \varepsilon_0)/\hbar = \frac{3\hbar}{2m} \left(\frac{\pi}{I}\right)^2 = 2\pi \times 2\text{Hz}$

weak kick \rightarrow Rabi oscillations

extremely low ~100pK energy scale!

Christoph Eigen

$$i\hbar\frac{\partial}{\partial t}\varphi(\mathbf{r},t) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r},t)\right]\varphi(\mathbf{r},t)$$

can turn off interactions!

³⁹K in $|1,1\rangle$ at the B = 350.4(1)Gzero crossing $(a \rightarrow 0)$

cylindrical box ($L \approx 50 \mu m$ and $R \approx 15 \mu m$)

lowest-lying axial excitation $\omega_K = (\varepsilon_1 - \varepsilon_0)/\hbar = \frac{3\hbar}{2m} \left(\frac{\pi}{I}\right)^2 = 2\pi \times 2\text{Hz}$

weak kick \rightarrow Rabi oscillations

extremely low ~100pK energy scale!

Christoph Eigen

dynamics described by Schrödinger equation:

$$i\hbar \frac{\partial}{\partial t} \varphi(\mathbf{r}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t) \right] \varphi(\mathbf{r}, t)$$

Christoph Eigen

signatures of chaos

In Floquet basis

L. E. Reichl & W. A. Lin, PRA 33, 3598 (1986) W. A. Lin & L. E. Reichl, PRA 37, 3972 (1988)

$$\mathbf{F}_{s} = (U_{s}/L)\cos(\omega_{s}t_{s})\hat{\mathbf{e}}_{z}$$
absorption image
$$\mathbf{F}(t_{s}) = \mathbf{F}(t_{s})$$
*k*_z

$$\mathbf{F}(t_{s}) = k_{z}$$
*k*_z

prepare BEC at $a \approx 0$ in trap of depth $U_{\rm D}/k_{\rm B} \approx 90 {\rm nK}$

violently shake axially $(U_{\rm s}/k_{\rm B} = 10.5 \,\mathrm{nK}, \omega_{\rm s}/(2\pi) = 10 \,\mathrm{Hz})$

 $(\hbar\omega_z \ll U_{\rm s} \ll U_{\rm D})$

Christoph Eigen

50 ms ToF

()

G. Martirosyan *et al.*, PRL **132**, 113401 (2024)

violently shake axially $(U_s/k_B = 10.5 \text{ nK}, \omega_s/(2\pi) = 10 \text{ Hz})$

 $(\hbar\omega_z \ll U_{\rm s} \ll U_{\rm D})$

Christoph Eigen

50 ms ToF

G. Martirosyan *et al.*, PRL **132**, 113401 (2024)

$$(U_{\rm s}/k_{\rm B} = 10.5 \,\mathrm{nK}, \omega_{\rm s}/(2\pi) = 10 \,\mathrm{Hz})$$

 $(\hbar\omega_z \ll U_s \ll U_D)$

Christoph Eigen

(reaches steady-state)

G. Martirosyan *et al.*, PRL **132**, 113401 (2024)

$$(U_{\rm s}/k_{\rm B} = 10.5 \,\mathrm{nK}, \omega_{\rm s}/(2\pi) = 10 \,\mathrm{Hz})$$

 $(\hbar\omega_z \ll U_{\rm s} \ll U_{\rm D})$

Christoph Eigen

G. Martirosyan et al., PRL 132, 113401 (2024)

Trento, April 2024

 k_r

Christoph Eigen

G. Martirosyan *et al.*, PRL **132**, 113401 (2024)

New far-from-equilibrium state?

highly nonthermal distribution!

Christoph Eigen

G. Martirosyan et al., PRL 132, 113401 (2024)

$$2\pi k_r \tilde{n}_{k_r} \mathrm{d}k_r = 1$$

very low energy, no BEC!

If allowed to equilibrate, condensed fraction $\approx 75\%$

Subdiffusive dynamic scaling

in the dynamics of a noninteracting Bose gas driven far from equilibrium

 $U_{\rm D}/k_{\rm B} \approx 90 {\rm nK}, U_{\rm s}/k_{\rm B} = 7.0 {\rm nK}, \omega_{\rm s}/(2\pi) = 10 {\rm Hz}$

 power-law energy growth

 \bullet E saturates when loss occurs

Christoph Eigen

G. Martirosyan *et al.*, PRL **132**, 113401 (2024)

Subdiffusive dynamic scaling

in the dynamics of a noninteracting Bose gas driven far from equilibrium

 $U_{\rm D}/k_{\rm B} \approx 90 {\rm nK}, U_{\rm s}/k_{\rm B} = 7.0 {\rm nK}, \ \omega_{\rm s}/(2\pi) = 10 {\rm Hz}$

 power-law energy growth

dynamic scaling?

✤ E saturates when loss occurs

Christoph Eigen

G. Martirosyan et al., PRL 132, 113401 (2024)

Subdiffusive dynamic scaling

in the dynamics of a noninteracting Bose gas driven far from equilibrium

power-law energy growth

dynamic scaling? \tilde{n}_l

 \bullet E saturates when loss occurs

Christoph Eigen

 $U_{\rm D}/k_{\rm B} \approx 90 {\rm nK}, U_{\rm s}/k_{\rm B} = 7.0 {\rm nK}, \omega_{\rm s}/(2\pi) = 10 {\rm Hz}$

conserving
transport w
$$\alpha = -0.45($$

$$\beta = -0.23($$

$$t_{\rm s} \in \{1.1 - 14\}$$

$$t_0 = 3s$$

$$k_r(k_r, t_s) = \tilde{t}^{\alpha} \tilde{n}_{k_r}(\tilde{t}^{\beta} k_r, t_0)$$

$$\tilde{t} = t_s / t_0$$

G. Martirosyan *et al.*, PRL **132**, 113401 (2024)

Subdiffusive dynamic scaling

in the dynamics of a noninteracting Bose gas driven far from equilibrium

+ power-law energy growth

dynamic scaling? \tilde{n}

 \bullet E saturates when loss occurs

Christoph Eigen

G. Martirosyan *et al.*, PRL **132**, 113401 (2024)

 $U_{\rm D}/k_{\rm B} \approx 90 {\rm nK}, U_{\rm s}/k_{\rm B} = 7.0 {\rm nK}, \omega_{\rm s}/(2\pi) = 10 {\rm Hz}$

$$k_r(k_r, t_s) = \tilde{t}^{\alpha} \tilde{n}_{k_r}(\tilde{t}^{\beta} k_r, t_0)$$

$$\tilde{t} = t_s / t_0$$

scaling function $f_{\rm cg} = A_0 \exp[-(k/k_0)^{\kappa}],$ with $\kappa = 3.0(2)$

behavior reproduced with Schrödinger equation simulations with speckle disorder

+ power-law energy growth

dynamic scaling? \tilde{n}

 \bullet E saturates when loss occurs

Christoph Eigen

G. Martirosyan *et al.*, PRL **132**, 113401 (2024)

Subdiffusive dynamic scaling

 $U_{\rm D}/k_{\rm B} \approx 90 {\rm nK}, U_{\rm s}/k_{\rm B} = 7.0 {\rm nK}, \omega_{\rm s}/(2\pi) = 10 {\rm Hz}$

$$k_r(k_r, t_s) = \tilde{t}^{\alpha} \tilde{n}_{k_r}(\tilde{t}^{\beta} k_r, t_0)$$

$$\tilde{t} = t_s / t_0$$

scaling function $f_{\rm cg} = A_0 \exp[-(k/k_0)^{\kappa}],$ with $\kappa = 3.0(2)$

Robustness of dynamic scaling

vary disorder ($\Gamma_{\rm d} \propto U_{\rm D}^2$) and drive ($U_{\rm s}$)

	$\Gamma_{\rm d}$	$U_{\rm s}/k_{\rm B}$	$\omega_{\rm s}/(2\pi)$	t _s	К	$-\alpha$	$-\beta$
	(s^{-1})	(nK)	(Hz)	(s)			
	2.5	3.5	10	{5.0-10}	2.7	0.51	0.26
—	2.5	10.5	10	{1.5-4.0}	2.7	0.47	0.25
—	8.0	3.5	10	{2.0-25}	2.9	0.47	0.24
—	8.0	7.0	10	{1.1-14}	3.0	0.45	0.23
—	8.0	10.5	10	{0.96-9.6}	2.9	0.45	0.23
	15.0	10.5	10	{0.6-4.5}	3.0	0.47	0.24

fixed
$$t_0 = 3$$
 s

calibrate disorder potential to be $\sim 2\%$ of $U_{\rm D}$

Christoph Eigen

in the dynamics of a noninteracting box-trapped Bose gas driven far from equilibrium

collapsed curves

faster for larger $U_{\rm s}$ and $\Gamma_{\rm d}$

robust behavior consistent with

- $\alpha = -0.48(4)$
- $\beta = -0.24(2)$
 - $\kappa = 2.9(2)$

G. Martirosyan *et al.*, PRL **132**, 113401 (2024)

Robustness of dynamic scaling

in the dynamics of a noninteracting box-trapped Bose gas driven far from equilibrium

vary disorder ($\Gamma_{\rm d} \propto U_{\rm D}^2$) and drive ($U_{\rm s}$) and $\omega_{\rm s}/(2\pi)$

	$\Gamma_{\rm d}$	$U_{\rm s}/k_{\rm B}$	$\omega_{\rm s}/(2\pi)$	t _s	К	$-\alpha$	$-\beta$
_	(s^{-1})	(nK)	(Hz)	(S)			
	2.5	3.5	10	{5.0-10}	2.7	0.51	0.26
—	2.5	10.5	10	{1.5-4.0}	2.7	0.47	0.25
	8.0	3.5	10	{2.0-25}	2.9	0.47	0.24
—	8.0	7.0	10	{1.1-14}	3.0	0.45	0.23
—	8.0	10.5	10	{0.96-9.6}	2.9	0.45	0.23
—	15.0	10.5	10	$\{0.6-4.5\}$	3.0	0.47	0.24
	8.0	10.5	2	{2.0-15}	2.2	0.58	0.30
—	8.0	10.5	5	{1.6-8.0}	2.9	0.47	0.24
	8.0	10.5	15	{1.0-2.5}	2.8	0.48	0.26

fixed
$$t_0 = 3$$
 s

calibrate disorder potential to be ~ 2 \% of $U_{\rm D}$

Christoph Eigen

G. Martirosyan et al., PRL 132, 113401 (2024)

collapsed curves

faster for larger $U_{\rm S}$ and $\Gamma_{\rm d}$

robust behavior consistent with

$$\alpha = -0.48(4$$

$$\beta = -0.24(2$$

$$\kappa = 2.9(2)$$

also not fine-tuned in frequency

Semi-classical model

Christoph Eigen

Christoph Eigen

 $\frac{\mathrm{d}}{\mathrm{d}t}\langle E^2\rangle = rE_\mathrm{c}^2$

step size: $E_{\rm c} = \hbar^2 k_{\rm c}^2 / (2m)$

Christoph Eigen

reflecting boundary at E = 0, so E grows!

drift-diffusion equation

$$\frac{\partial P}{\partial t} = \frac{4sfk_{c}E_{c}^{2}}{45}\frac{\partial}{\partial E}\left[\frac{1}{sk+f}\left(\frac{\partial P}{\partial E} - \frac{P}{2E}\right)\right]$$

Y. Zhang et al., C. R. Phys. 24 [online first] (2023)

Christoph Eigen

step size:
$$E_{\rm c} = \hbar^2 k_{\rm c}^2 / (2m)$$

 $E \propto t^{\eta}$, with $\eta \in \{0.5 - 0.4\}$ $n_k \propto \exp[-(k/k_0)^{\kappa_{3D}}]$ with $\kappa_{3D} \in \{4 - 5\}$

in general:

 $\kappa_{3D} = 4$ corresponds to $\kappa \approx 3$

Crossover to wave-turbulent behavior

what happens in the presence of weak interactions?

♦ excite cloud $(U_{\rm s}/k_{\rm B} \approx 7.0\,{\rm nK}, \omega_{\rm s}/(2\pi) = 10\,{\rm Hz}, t_{\rm s} = 1\,{\rm s})$

 \bullet vary initial interaction strength a

$$\begin{array}{c}
a(a_0) \\
\hline
0 \\
- 0 \\
- 5 \\
- 20 \\
- 50 \\
- 100
\end{array}$$

Christoph Eigen

G. Martirosyan *et al.*, PRL **132**, 113401 (2024)

Crossover to wave-turbulent behavior

what happens in the presence of weak interactions?

excite cloud $(U_{\rm s}/k_{\rm B} \approx 7.0\,{\rm nK}, \omega_{\rm s}/(2\pi) = 10\,{\rm Hz}, t_{\rm s} = 1\,{\rm s})$

 \bullet vary initial interaction strength *a*

for weak-wave turbulence

$$f_{\rm p} = n_0 \, k^{-\gamma + 1}$$

N. Navon *et al.*, Nature **539**, 72 (2016) N. Navon *et al.*, Science **366**, 382 (2019) L. H. Dogra et al., Nature 620, 521 (2023)

G. Martirosyan et al., PRL 132, 113401 (2024)

Exploit far-from-equilibrium state? coarsening dynamics

far-from-equilibrium state engineering

can vary initial N, E, k_D, \cdots

Christoph Eigen

far-from-equilibrium state engineering

can vary initial N, E, k_D, \cdots

bidirectional transport

see also

M. Prüfer et al., Nature 563, 217 (2018) S. Erne *et al.*, Nature **563**, 225 (2018) J. A. P. Glidden et al., Nat. Phys. 17, 457 (2021) S. Huh *et al.*, Nat. Phys. **20**, 402 (2024)

Christoph Eigen

Christoph Eigen

Talk outline

Christoph Eigen

- I. Subdiffusive dynamic scaling in a driven disordered Bose gas G. Martirosyan et al. PRL **132**, 113401 (2024) Y. Zhang et al. C. R. Phys. 24 [online first] (2023)
 - 2. Bose polarons in box
 - J. Etrych et al. arXiv:2402.14816 (2024)

Impurities in a quantum bath

fundamental problem in physics

historically: Landau, Pekar, ...

generic! quantum system + environment

Fröhlich Hamiltonian, simple mean-field theories...

Christoph Eigen

fundamental problem in physics

historically: Landau, Pekar, ...

widespread concept relevant in many materials!

e.g. Kondo effect, colossal magnetoresistance

generic! quantum system + environment

Fröhlich Hamiltonian, simple mean-field theories...

Christoph Eigen

Impurities in a quantum bath

relevant for hybrid quantum simulation platforms: e.g. coolants, ...

fundamental problem in physics

Fermi polaron

impurities immersed in a Fermi gas

Some highlights: Schirotzek *et al.*, PRL **102**, 230402 (2009) Nascimbène *et al.*, PRL **103**, 170402 (2009) Kohstall *et al.*, Nature **485**, 615 (2012) Koschorreck *et al.*, Nature **485**, 619 (2012) Cetina *et al.*, Science **354**, 96 (2016) Scazza *et al.*, PRL **118**, 083602 (2017) Ness *et al.*, PRX **10**, 041019 (2020) Baroni *et al.*, Nat. Phys **20**, 68 (2024) Vivanco *et al.*, arXiv:2308.05746

in ultracold atoms

Paris, Innsbruck, MIT, Cambridge, JILA, Aarhus,...

Other related systems: Rydberg impurities, monolayer semiconductors, lattice polarons, etc...

Christoph Eigen

Impurities in a quantum bath

Bose polaron

impurities immersed in a BEC

fundamental problem in physics

in ultracold atoms

Other related systems: Rydberg impurities, monolayer semiconductors, lattice polarons, etc...

Christoph Eigen

Impurities in a quantum bath

JILA, Aarhus,...

Bose polaron

impurities immersed in a BEC

Impurities in a quantum bath

fundamental problem in physics

Other related systems: Rydberg impurities, monolayer semiconductors, lattice polarons, etc...

Christoph Eigen

in ultracold atoms

Paris, Innsbruck, MIT, Cambridge, JILA, Aarhus,...

> from Jørgensen *et al.*, PRL **117**, 055302 (2016)

Bose polaron

impurities immersed in a BEC

Some highlights: Hu *et al.*, PRL **117**, 055301 (2016) Jørgensen *et al.*, PRL **117**, 055302 (2016) Yan et al., Science **368**, 190 (2020) Skou *et al.*, Nat. Phys. **17**, 731 (2021) Cayla *et al.*, PRL **130**, 153401 (2023)

injection spectrum

Impurities in a quantum bath

fundamental problem in physics

in ultracold atoms

Other related systems: Rydberg impurities, monolayer semiconductors, lattice polarons, etc...

Christoph Eigen

Paris, Innsbruck, MIT, Cambridge, JILA, Aarhus,...

Bose polarons in a homogeneous BEC

another spin state mobile equal-mass impurities

rich Feshbach resonance landscape for tuning intra- and inter-state interactions...

> 3 interactions strengths a, a_B, a_I

Christoph Eigen

Bose polarons in a homogeneous BEC

optical box

A. L. Gaunt *et al.*, PRL **110**, 200406 (2013) C. Eigen *et al.*, PRX **6**, 041058 (2016)

homogeneous density n

rich Feshbach resonance landscape for tuning intra- and inter-state interactions...

momentum:
$$k_n = (6\pi^2 n)^{1/3}$$

energy: $E_n = \hbar^2 k_n^2 / (2m)$
time: $t_n = \hbar / E_n$

3 interactions strengths a, a_B, a_I

Christoph Eigen

another spin state mobile equal-mass impurities

levitate two spin states against gravity?

Pinpointing Feshbach resonances in ³⁹K

recent precision measurements of few-body physics!

$ F, m_F\rangle$	$B_{\rm res}$ (G)	$a_{\rm bg}\Delta (a_0 \rm G)$	B_{zero} (G)	$\mu(\mu_B)$
1,1>	25.91(6)	_	_	-0.605
$ 1,1\rangle$	402.74(1)	1530(20)	350.4(1) ^a	-0.961
$ 1,1\rangle$	752.3(1) ^b	-	-	-0.987
$ 1,0\rangle$	58.97(12)	-	-	-0.337
$ 1,0\rangle$	65.57(23)	-	-	-0.370
$ 1,0\rangle$	472.33(1)	2040(20)	393.2(2)	-0.945
$ 1,0\rangle$	491.17(7)	140(30)	490.1(2)	-0.949
$ 1,-1\rangle$	33.5820(14) ^c	-1073 ^c	/	0.324
$ 1,-1\rangle$	162.36(2)	760(20)	/	-0.489
$ 1,-1\rangle$	561.14(2)	1660(20)	504.9(2)	-0.959

Intrastate

a) Fattori et al., PRL 101, 190405 (2008) b) D'Errico et al., NJP 9, 223 (2007) c) Chapurin *et al.*, PRL **123**, 233402 (2019)

> also explored Efimov universalities

J. Etrych et al., PRR 5, 013174 (2023)

Christoph Eigen

Interstate				
$ F, m_F\rangle_1 + F, m_F\rangle_2$	$B_{\rm res}$ (G)	$a_{\rm bg}\Delta (a_0{\rm G})$	$\mu_1(\mu_B)$	$\mu_2(\mu_B$
$ 1,1\rangle + 1,0\rangle$	25.81(6)	-	-0.605	-0.15
$ 1,1\rangle + 1,0\rangle$	39.81(6)	-	-0.651	-0.23
$ 1,1\rangle + 1,0\rangle$	445.42(3)	1110(40)	-0.967	-0.939
$ 1,1\rangle+ 1,-1\rangle$	77.6(4)	-	-0.747	0.034
$ 1,1\rangle + 1,-1\rangle$	501.6(3)	-	-0.973	-0.948
$ 1,0\rangle + 1,-1\rangle$	113.76(1) ^d	715(7) ^d	-0.569	-0.21
$ 1,0\rangle + 1,-1\rangle$	526.16(3)	970(50)	-0.956	-0.953

d) Tanzi et al., PRA 98, 062712 (2018) - used for previous ³⁹K polarons

s-wave interaction strength

$$a(B) = a_{\rm bg} \left(1 - \frac{\Delta}{B - B_{\rm res}} \right)$$

Pinpointing Feshbach resonances in ³⁹K

recent precision measurements of few-body physics!

)	Interstate					
	$ F, m_F\rangle_1 + F, m_F\rangle_2$	$B_{\rm res}$ (G)	$a_{\rm bg}\Delta (a_0{\rm G})$	$\mu_1(\mu_B)$	$\mu_2(\mu_B$	
	$ 1,1\rangle + 1,0\rangle$	25.81(6)	-	-0.605	-0.15	
1	$ 1,1\rangle + 1,0\rangle$	39.81(6)	-	-0.651	-0.233	
	$ 1,1\rangle + 1,0\rangle$	445.42(3)	1110(40)	-0.967	-0.939	
	$ 1,1\rangle + 1,-1\rangle$	77.6(4)	-	-0.747	0.034	
1	$ 1,1\rangle + 1,-1\rangle$	501.6(3)	-	-0.973	-0.948	
	$ 1,0\rangle + 1,-1\rangle$	113.76(1) ^d	715(7) ^d	-0.569	-0.21	
1	$ 1,0\rangle + 1,-1\rangle$	526.16(3)	970(50)	-0.956	-0.953	

Experimental probes

Hu et al., PRL **117**, 055301 (2016) Jørgensen *et al.*, PRL **117**, 055302 (2016)

 $|\downarrow\rangle$

weak, long pulses:
access to spectral fundtion
$$A(\omega)$$

measure fractional atom loss $\Delta N/N$
following a quench to B_{res} and hold time
 $I(\omega) = \frac{t_{rf}}{2\pi} \int_{-\infty}^{\infty} A(\omega') \operatorname{sinc} \left[\frac{(\omega - \omega') t_{rf}}{2} \right]^2 d\omega'$
B
Christoph Eigen

$$|\uparrow\rangle = |1,-1\rangle, |\downarrow\rangle = |1,0\rangle$$

 $B_{\rm res} = 526.2 \,\rm G$

little technical broadening (1600 μ s pulse, < 10 % transfer)

Weakly interacting regime

$$|\uparrow\rangle = |1,-1\rangle, |\downarrow\rangle = |1,0\rangle$$

 $B_{\rm res} = 526.2 \,\rm G$

little technical broadening (1600 μ s pulse, < 10 % transfer)

$$|\uparrow\rangle = |1,-1\rangle, |\downarrow\rangle = |1,0\rangle$$

 $B_{\rm res} = 526.2 \,\rm G$

little technical broadening (1600 μ s pulse, < 10 % transfer)

$$|\uparrow\rangle = |1,-1\rangle, |\downarrow\rangle = |1,0\rangle$$

 $B_{\rm res} = 526.2 \,\rm G$

little technical broadening (1600 μ s pulse, < 10 % transfer)

Weakly interacting regime
Bose polaron injection spectrum

attractive

repulsive

J. Etrych et al., arXiv:2402.14816 (2024)

Bose polaron injection spectrum repulsive attractive 0.3 a/a_0 a/a_0 -3900 **ANN** +2200 0000000 **|**1|↑⟩ -30 30 30 -30 |↓|⟩↓→ Detuning, $\delta/(2\pi)$ (kHz) 1.5 0.5 1.0 $I(\delta)E_n/\hbar$ $|\uparrow\rangle = |1,-1\rangle$ **≢**†\$26.2**G** $\sigma^{B_{\rm res}}$ fixed $n \approx 12 \,\mu \text{m}^{-3}$ $\hbar \delta \delta E_n$ $k_n = (6\pi^2 m)^{1/3} \approx 9 \mu m^ E_n = \hbar^2 k_n^2 \overline{L(2m) \approx 10}$ $\frac{8}{200} \mu s sq rf pulse$ $\Omega/(2\pi) = 0.6 \,\mathrm{kHz}$ -4 Christoph Eigen⁴ 0

Injection spectrum $I(\delta) \propto \Delta N/N$

 $1/(k_n a)$

Bose polaron injection spectrum repulsive attractive 0.3 a/a_0 a/a_0 **∆***N*/N -3900 +2200 **|**↑|↑) 30 -30 30 -30 |↓|)↓→ Detuning, $\delta/(2\pi)$ (kHz) 0.5 1.5 1.0 $I(\delta)E_n/\hbar$ $|\uparrow\rangle = |1,-1\rangle$ **⊨**↑**5**26.2**G** $\sigma^{B_{\rm res}}$ fixed $n \approx 12 \,\mu \text{m}^{-3}$ $\hbar \delta h \delta | E_n$ $k_n = (6\pi^2 m)^{1/3} \approx 9 \mu m^ E_n = \hbar^2 k_n^2 \overline{L(2m) \approx 10}$ $\frac{3}{200}\mu$ s sq rf pulse $\tilde{\Omega}/(2\pi)$ $= 0.6 \,\mathrm{kHz}$ -4 Christoph Eigen⁴ 0 $1/(k_n a)$

simple theories (no free parameters!)

Feshbach dimer

mean-field

single-phonon ansatz/ **T-matrix**

Rath et al., PRA 88, 053632 (2013)

modern theories: Tempere, Bruun, Massignan, Enss, Schmidt, Demler, Grusdt, Gurarie, Giorgini, Parish, Levinsen, Lewenstein, Devreese, Naidon, Schmelcher, Busch, ...

Christoph Eigen

J. Etrych *et al.*, arXiv:2402.14816 (2024)

Christoph Eigen

Real-time dynamics

Ramsey-like many-body interferometry

J. Etrych *et al.*, arXiv:2402.14816 (2024)

J. Etrych *et al.*, arXiv:2402.14816 (2024)

symbols

spectroscopy data

Christoph Eigen

Comparison of spectroscopy & interferometry

Comparison of spectroscopy & interferometry

Christoph Eigen

J. Etrych *et al.*, arXiv:2402.14816 (2024)

Christoph Eigen

J. Etrych et al., arXiv:2402.14816 (2024)

Comparison of spectroscopy & interferometry

Rabi and Ramsey would be happy :)

Detuning, $\hbar \delta / E_n$

How universal are the dynamics?

Christoph Eigen

density-set units $k_n = (6\pi^2 n)^{1/3}$ $E_n = \hbar^2 k_n^2 / (2m)$ $t_n = \hbar/E_n$

J. Etrych *et al.*, arXiv:2402.14816 (2024)

How universal are the dynamics?

Christoph Eigen

J. Etrych *et al.*, arXiv:2402.14816 (2024)

For Bosons, other scales thought to weakly enter:

> e.g. bath properties $a_{\rm b}$, Efimov physics? ...

some examples: J. Levinsen *et al.* PRL **115**, 125302 (2015) L. A. Pena Ardila *et al*. PRA **92**, 033612 (2015) Y. E. Shchadilova *et al.* PRL **117**, 113002 (2016) F. Grusdt et al. PRA 96, 013607 (2017) S. M. Yoshida *et al.*, PRX **8**, 011024 (2018) M. Drescher *et al*. PRR **2**, 032011 (2020) P. Massignan *et al.* PRL **126**, 123403 (2021) A. Christianen *et al.* PRA **105**, 053302 (2022) A. Christianen et al. SciPost Phys. 16, 067 (2024)

density-set units $k_n = (6\pi^2 n)^{1/3}$ $E_n = \hbar^2 k_n^2 / (2m)$ $t_n = \hbar/E_n$

How universal are the dynamics?

Christoph Eigen

J. Etrych *et al.*, arXiv:2402.14816 (2024)

M. Drescher *et al*. PRR **2**, 032011 (2020) P. Massignan *et al.* PRL **126**, 123403 (2021) A. Christianen *et al.* PRA **105**, 053302 (2022) A. Christianen et al. SciPost Phys. 16, 067 (2024)

Trento, April 2024

 $t_n = \hbar/E_n$

Aside: Universality in the Unitary Bose Gas

Christoph Eigen

J. Etrych *et al.*, arXiv:2402.14816 (2024)

universality in single-component bulk unitary Bose gases

P. Makotyn *et al.*, Nat. Phys. **10**, 116 (2014)

C. E. Klauss *et al.*, PRL **119**, 143301 (2017)

CE et al., PRL 119, 250404 (2017) CE et al., Nature 563, 221 (2018)

weakly interacting

unitary regime

density-set units

$$k_n = (6\pi^2 n)^{1/3}$$
 $E_n = \hbar^2 k_n^2 / (2m)^{1/3}$
 $t_n = \hbar / E_n$

coherence function, $C(t) = |C(t)| \exp[i\varphi_{c}(t)]$

universal quantum dynamics!

Christoph Eigen

J. Etrych *et al.*, arXiv:2402.14816 (2024)

coherence function, $C(t) = |C(t)| \exp[i\varphi_{c}(t)]$

universal quantum dynamics!

Christoph Eigen

estimate based on inelastic losses

coherence function, $C(t) = |C(t)| \exp[i\varphi_{c}(t)]$

Christoph Eigen

estimate based on inelastic losses

coherence function, $C(t) = |C(t)| \exp[i\varphi_{c}(t)]$

universal quantum dynamics!

 phase winds linearly w/ slope $0.49(4)/t_n$

BUT

decoherence approx. exponential w/ inverse lifetime $0.60(8)/t_n$

Christoph Eigen

estimate based on inelastic losses

Universality of the Bose polaron spectrum?

spectroscopy to amass data with different $n, a, a_{\rm b}$

Christoph Eigen

J. Etrych *et al.*, arXiv:2402.14816 (2024)

 $1/(k_n a)$

Analyzing the injection spectra

characteristic spectra across the resonance

Christoph Eigen

 δ

small print: we always correct Γ for Fourier broadening using $\Gamma = (\Gamma_e^2 - \Gamma_{rf}^2)^{1/2}$

J. Etrych *et al.*, arXiv:2402.14816 (2024)

Analyzing the injection spectra

characteristic spectra across the resonance

small print: we always correct Γ for Fourier broadening using $\Gamma = (\Gamma_e^2 - \Gamma_{rf}^2)^{1/2}$

Christoph Eigen

residual isolates second branch for a > 0, extract $E_{\rm p}$ and $\hbar\Gamma$

J. Etrych *et al.*, arXiv:2402.14816 (2024)

same simple theory lines as before!

J. Etrych *et al.*, arXiv:2402.14816 (2024)

Christoph Eigen

Breakdown of quasiparticle picture near unitarity

J. Etrych *et al.*, arXiv:2402.14816 (2024)

Christoph Eigen

+ for $1/(k_n a) \gtrsim 1$, ratio $\hbar\Gamma/E_{\rm p}\approx{\rm constant}$

+ near $B_{\rm res} 1/(k_n a) \lesssim 1$, width exceeds energy!

quasiparticles no longer well defined near $B_{\rm res}!$

Conclusion & Outlook

- dynamic phase diagram?
- stronger disorder ◆ (localization)
- useful far-from-eq. state!

Christoph Eigen

Hadzibabic Group

Gevorg Martirosyan Jiří Etrych Alec Cao (\rightarrow JILA) Seb Morris Simon Fischer

Science and Technology **Facilities Council**

ECT Workshop, Trento The physics of strongly interacting matter April 25th, 2024

- Tanish Satoor
- Christopher Ho
- Christoph Eigen
- Zoran Hadzibabic

Martin Gazo Andrey Karailiev Konstantinos Konstantinou Paul Wong Yansheng Zhang Feiyang Wang **EPSRC Engineering and Physical Sciences Research Council** DesOEG

Christoph Eigen

UNIVERSITY OF

Thank you!

Christoph Eigen

ECT Workshop, Trento The physics of strongly interacting matter April 25th, 2024

Christoph Eigen

TYOF

