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Schrodinger group

Symmetries of the free Schrodinger equation
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Phase rotation M = mN v — ei“l//

space and time translations P, H; rotations Jij

imv-x—%mvzt

Galilean boosts K w(7,X) — ¢ w(t,X — Vi)

Dilatation D w(t, X) — 4> 2w (A%t, AX)



“Proper conformal
transformation”
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Schrodinger algebra
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Nonrelativistic CFTs

Y. Nishida, DTS, 2007

e NRCFTs are QFTs with Schrédinger symmetry

e local operators O(X) characterized by charge (mass) and
dimension [D, O(0)] = ZAOO(O) (M, O0)] = iN,O(0)

example:y N, =1, A, 2

e primary operators: [K,, O(O)] = |C, 0(6)] =0

e (Constraints from conformal invariance:

o\ C im,x”
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Example of NRCFTs

® Free particles
e nonrelativistic anyons (two spatial dimensions)
e Spin-1/2 fermions at unitarity

e realized in cold atom experiments, but also
approximately by neutrons



Example of NRCFT
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NR power counting: [E] =2, [p] = 1, [y] = %
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Does the fixed point survive at d = 3?

e ves, this is the so-called “unitarity fermion”



“Unitarity regime”
V(r) 4 V(r) .
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Take a potential of a certain shape, e.g.,
V(ry=—V,forr <ry, Oforr>r,

fine-tune the depth so that there is one “bound state” at
ZEero energy
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Then let ry, — 0O: “unitarity regime” s-wave scattering
saturates unitarity



Scattering length and
unitarity regime

This situation corresponds to low-energy resonant
scattering in quantum mechanics

s-wave scattering amplitude given by scattering length
a and effective range 7

J(k) =

0 1L 1 5

Unitarity regime: a — &0
ro — 0

e no dimensionful length scale



¢ The unitarity regime can be understood directly, without
taking the limit r, = O



Quantum-mechanical approach

e \Wave function of m spin-up and n spin-down fermions
WX, o5 X, 5 Y15 -5 ¥,)

e Y/ antisymmetric under exchanging two X’sor y's

e \When one spin-up and one spin-down fermions
approach each other:

C
Ww(X,y) = FO(|x—y|)+ -
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What are the local
operators?

e First example: annihilation operator in second
quantized formulation of QM

o (O]yp(x) ¥ _poay) = F(X)

e This is a charge-1 operator, dimension=3/2



Charge-2 local operator

e Second-gquantized formulation of QM:

(0] W (X (Y) | \PZ—body> = ¥(x,y)

e |Limity — X does not exist:

O]y, Xy, x) | F) = P(x,X) = o0

e Dbut one can define
O,(x) = lim [X — | Wi (X, (Y)

y—X

e then

(0] O0,(x)|¥) =1lim |x —y|VY(Xx,y) = finite

y—X



Dimension of O,

o Ox(x)=lim|x—y|y(X)y(y)

y—X
e A[O,] =2A[y]—1=2

o cffree theory: Alyy] = 3



Charge-3 operator

Need to know short distance behavior of (X, X,; y)

3-body problem solved by Efimov ~ 1970

Y(x, x5, y) ~ R~ f(a, p, F)

2 2 2 2
R =[x =% "+ [xy =y "+ [|x, -y
a, p, ¥ = 5 hyperangles

Charge-3 operator

O;(x) ~ Iim lim RO'2273WT(X)V/T(X2)W¢(Y)

X,—X y—X

A[O3] — 42727 cf free theory: [y y;, V] = 1—21



Dimension of charge-3 operators

A= % + 5 where s solves an equation
— () T , 4
[ = 0: SCOS<5S> | \/5 sm(gs) =0
A =4.666, 7.627, 9.614, .., 2n+=
l—1-21'”'4 Z 4sin(=s) =0
=1: (57— )Sln<5S> | \/gscos(gs) — sm(gs) =

A =4273, 6.878, 8216, .... 2n+2



Charge-4 operator

Dimension of operator with particle number N>3 can
only be obtained numerically

Nishida and DTS 2007: equal to ground state energy of
N unitary fermions in a harmonic trap

Al[O,] =35.0 £ 0.1 (cf. free theory: &)



Two point functions

One can compute two-point functions by inserting a
complete set of states

(010(t,x)0%(0)|0) = )" (0] O(0) | nYe~E**X(n] 0F(0) | 0)

Also constrained by Schrodinger symmetry

2-point function

C
(0(:%)0"(0.0)) = — exp<

iM x> )
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In momentum space

p2 A,=5/2
)

oM,

(00" @.p) ~ (



NRCFT in real world: neutrons

e ax —19 fm, ry= 2.8 fm

e NRCFT in energy range between f?/ma* ~ 0.1 MeV
and hz/mrg ~ 5 MeV

e (Consequence: power-law behavior in processes with
final state neutrons

e “Unnuclear Physics” Hammer, DTS 2021 nonrelativistic

version of Georgi’s “unparticle physics”



“UnNuclear physics”
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when energy scale of primary reaction is larger than % — 3n

%/ = “unnucleus” = field in NRCFT



Rates of unnuclear processes

(Etot—E, —P)
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e Near end point: T ~ (Ey — E)A_%, A= dimension of %



Nuclear reactions

do (E. — E)" A S
—_— —_ a = —_——
dE 2
A a
3H + 3H — 4He + 2n 2 —(0.5 Watson-Migdal 1950’
7~ +3H — y+ 3n 4.27 1.77

4He + 8He — 8Be + 4n 5.0 2.5



Comparison with “experiment
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Golak et al. PRC 98, 054001 (2018)



NRCFT as transient fixed point
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Deformations of NRCFT

Dimensional counting

S = Jg’ﬁ d°x (SZCFT + deformations)
-2 =3
operators with dim < 3: relevant; dim > 3: irrelevant

one relevant deformation: [OzJr 0,] =4

Leading Galilean-invariant irrelevant deformation:

VZ
0j(0,+—)0,  dim=6




Away from conformality

e Finite scattering length and effective range can be treated
as perturbation away from NRCFT

1
_ —0T0. — 0Ot (ig + L2
L= Lopr+ a0202 100, (i0+7V?) 0,

e Contribution to (030; ) can be computed using

conformal perturbation theory
S.D. Chowdhury, R. Mishra, DTS 2309.15177
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Conformal perturbation theory
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Effective-range correction

e Effective range correction proportional to

=0
[(3-)Id-3)

e \Vanishes at physical dimension d = 3, but not in
fractional spatial dimension

e we do not understand this

e Also observed for high-charge operators Beane
Orlando Reffert (2024)



Open questions

Can one resum all 1/a correction and determine the
correlator along the whole RG flow?

Can be done for O,

) —1
<020§> = (\/% —Po — é)

but needs to be down for charge-3 operators

Charge-4 operators and higher?

High-charge limit Beane Orlando Reffert 2403.18898



Conclusion

NR conformal field theories have Schrodinger symmetry
Example: fermions at unitarity
Approximately realized by neutrons in nuclear physics

Leads to a power-law behavior of differential cross sections of
certain processes near threshold

Nonrelativistic conformal perturbation theory

the full power of NRCFT still to be explored



