## $\mathcal{N}$ onrelativistic

## Conformal Field Theory <br> and its applications

Dam Thanh Son (University of Chicago)
ECT* workshop The physics of strongly interacting matter: neutron stars, cold atomic gases and related systems April 24, 2024

## Plan

- Nonrelativistic conformal symmetry
- Nonrelativistic CFTs
- Fermions at unitarity
- Neutrons and "UnNuclear Physics"

Refs.: Y. Nishida, DTS 0706.3746
H.-W. Hammer, DTS 2103.12610
S.D. Chowdhury, R. Mishra, DTS 2309.15177

## Schrödinger group

- Symmetries of the free Schrödinger equation

$$
i \frac{\partial \psi}{\partial t}=-\frac{1}{2 m} \nabla^{2} \psi
$$

- Phase rotation $M=m N \quad \psi \rightarrow e^{i \alpha} \psi$
- space and time translations $\mathbf{P}, H$; rotations $J_{i j}$
- Galilean boosts $\mathbf{K} \psi(t, \mathbf{x}) \rightarrow e^{i m \mathbf{v} \cdot \mathbf{x}-\frac{i}{2} m v^{2} t} \psi(t, \mathbf{x}-\mathbf{v} t)$
- Dilatation $D \psi(t, \mathbf{x}) \rightarrow \lambda^{3 / 2} \psi\left(\lambda^{2} t, \lambda \mathbf{x}\right)$


## "Proper conformal transformation"

$$
C: \psi(t, \mathbf{x}) \rightarrow \frac{1}{(1+\alpha t)^{3 / 2}} \exp \left(\frac{i}{2} \frac{m \alpha x^{2}}{1+\alpha t}\right) \psi\left(\frac{t}{1+\alpha t}, \frac{\mathbf{x}}{1+\alpha t}\right)
$$

## Schrödinger algebra

$[X, Y]$

| $X \backslash Y$ | $P_{j}$ | $K_{j}$ | $D$ | $C$ | $H$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{i}$ | 0 | $-i \delta_{i j} M$ | $-i P_{i}$ | $-i K_{i}$ | 0 |
| $K_{i}$ | $i \delta_{i j} M$ | 0 | $i K_{i}$ | 0 | $i P_{i}$ |
| $D$ | $i P_{j}$ | $-i K_{j}$ | 0 | $-2 i C$ | $2 i H$ |
| $C$ | $i K_{j}$ | 0 | $2 i C$ | 0 | $i D$ |
| $H$ | 0 | $-i P_{j}$ | $-2 i H$ | $-i D$ | 0 |

$[N$, anything $]=0$

## Nonrelativistic CFTs

Y. Nishida, DTS, 2007

- NRCFTs are QFTs with Schrödinger symmetry
- local operators $O(\vec{x})$ characterized by charge (mass) and dimension $[D, O(0)]=i \Delta_{0} O(0), \quad[M, O(0)]=i N_{O} O(0)$ example: $\psi \quad N_{\psi}=1, \Delta_{\psi}=\frac{3}{2}$
- primary operators: $\left[K_{i}, O(\overrightarrow{0})\right]=[C, O(\overrightarrow{0})]=0$
- Constraints from conformal invariance:

$$
\left\langle T O(t, \vec{x}) O^{\dagger}(0,0)\right\rangle=\frac{c}{t^{\Delta_{o}}} \exp \left(\frac{i m_{O} x^{2}}{2 t}\right) \quad \begin{aligned}
& {[E]=2} \\
& {[p]=1}
\end{aligned}
$$

## Example of NRCFTs

- Free particles
- nonrelativistic anyons (two spatial dimensions)
- Spin-1/2 fermions at unitarity
- realized in cold atom experiments, but also approximately by neutrons


## Example of NRCFT

- $S=\int d t d^{d} \mathbf{x}\left(i \psi^{\dagger} \partial_{t} \psi-\frac{1}{2}|\nabla \psi|^{2}-\lambda \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}\right)$
- NR power counting: $[E]=2,[p]=1,[\psi]=\frac{d}{2}$
- $d=2+\epsilon: \beta(\lambda)=\epsilon \lambda+\frac{1}{2 \pi} \lambda^{2}$
- interacting CFT at $\lambda_{*}=-2 \pi \epsilon$
- Does the fixed point survive at $d=3$ ?
- yes, this is the so-called "unitarity fermion"


## 




- Take a potential of a certain shape, e.g.,

$$
V(r)=-V_{0} \text { for } r<r_{0}, 0 \text { for } r>r_{0}
$$

- fine-tune the depth so that there is one "bound state" at zero energy

$$
V_{0}=\frac{\pi^{2} \hbar^{2}}{8 m} \frac{1}{r_{0}^{2}}
$$

- Then let $r_{0} \rightarrow 0$ : "unitarity regime" s-wave scattering saturates unitarity


## Scattering length and unitarity regime

- This situation corresponds to low-energy resonant scattering in quantum mechanics
- s-wave scattering amplitude given by scattering length $a$ and effective range $r_{0}$ :

$$
f(k)=\frac{1}{-i k+\frac{1}{a}+\frac{1}{2} k r_{0}^{2}}
$$

- Unitarity regime: $a \rightarrow \infty$

$$
r_{0} \rightarrow 0
$$

- no dimensionful length scale
- The unitarity regime can be understood directly, without taking the limit $r_{0} \rightarrow 0$


## Quantum-mechanical approach

- Wave function of $m$ spin-up and $n$ spin-down fermions $\psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m} ; \mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right)$
- $\psi$ antisymmetric under exchanging two X's or y's
- When one spin-up and one spin-down fermions approach each other:

$$
\begin{gathered}
\psi(\mathbf{x}, \mathbf{y})=\frac{C}{|\mathbf{x}-\mathbf{y}|}+O(|\mathbf{x}-\mathbf{y}|)+\cdots \\
H=-\frac{1}{2} \sum_{a} \frac{\partial^{2}}{\partial \mathbf{x}_{a}^{2}}-\frac{1}{2} \sum_{a} \frac{\partial^{2}}{\partial \mathbf{y}_{a}^{2}}
\end{gathered}
$$

## What are the local operators?

- First example: annihilation operator in second quantized formulation of QM
- $\langle 0| \hat{\psi}(\mathbf{x})\left|\Psi_{1 \text {-body }}\right\rangle=\Psi(\mathbf{x})$
- This is a charge- 1 operator, dimension=3/2


## Charge-2 local operator

- Second-quantized formulation of QM :

$$
\langle 0| \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{y})\left|\Psi_{2 \text {-body }}\right\rangle=\Psi(\mathbf{x}, \mathbf{y})
$$

- Limit $\mathbf{y} \rightarrow \mathbf{x}$ does not exist:

$$
\langle 0| \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{x})|\Psi\rangle=\Psi(\mathbf{x}, \mathbf{x})=\infty
$$

- but one can define

$$
O_{2}(\mathbf{x})=\lim _{\mathbf{y} \rightarrow \mathbf{x}}|\mathbf{x}-\mathbf{y}| \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{y})
$$

- then

$$
\langle 0| O_{2}(\mathbf{x})|\Psi\rangle=\lim _{\mathbf{y} \rightarrow \mathbf{x}}|\mathbf{x}-\mathbf{y}| \Psi(\mathbf{x}, \mathbf{y})=\text { finite }
$$

## Dimension of $O_{2}$

- $O_{2}(\mathbf{x})=\lim _{\mathbf{y} \rightarrow \mathbf{x}}|\mathbf{x}-\mathbf{y}| \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{y})$
- $\Delta\left[O_{2}\right]=2 \Delta[\psi]-1=2$
- cf free theory: $\Delta[\psi \psi]=3$


## Charge-3 operator

- Need to know short distance behavior of $\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2} ; \mathbf{y}\right)$
- 3-body problem solved by Efimov ~ 1970

$$
\begin{aligned}
& \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2} ; \mathbf{y}\right) \sim R^{-0.2273} f(\alpha, \hat{\rho}, \hat{r}) \\
& R^{2}=\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|^{2}+\left|\mathbf{x}_{1}-\mathbf{y}\right|^{2}+\left|\mathbf{x}_{2}-\mathbf{y}\right|^{2} \\
& \alpha, \hat{\rho}, \hat{r}=5 \text { hyperangles }
\end{aligned}
$$

- Charge-3 operator

$$
O_{3}(\mathbf{x}) \sim \lim _{\mathbf{x}_{2} \rightarrow \mathbf{x} \mathbf{y} \rightarrow \mathbf{x}} \lim ^{0.2273} \psi_{\uparrow}(\mathbf{x}) \psi_{\uparrow}\left(\mathbf{x}_{2}\right) \psi_{\downarrow}(\mathbf{y})
$$

- $\Delta\left[O_{3}\right]=4.2727$
cf free theory: $\left[\psi_{\downarrow} \psi_{\uparrow} \nabla \psi_{\uparrow}\right]=\frac{11}{2}$


## Dimension of charge-3 operators

$\Delta=\frac{5}{2}+s \quad$ where $s$ solves an equation
$l=0: \quad s \cos \left(\frac{\pi}{2} s\right)+\frac{4}{\sqrt{3}} \sin \left(\frac{\pi}{6} s\right)=0$
$\Delta=4.666,7.627,9.614, \ldots, 2 n+\frac{7}{2}$

$$
l=1: \quad\left(s^{2}-1\right) \sin \left(\frac{\pi}{2} s\right)+\frac{4}{\sqrt{3}} s \cos \left(\frac{\pi}{6} s\right)-4 \sin \left(\frac{\pi}{6} s\right)=0
$$

$$
\Delta=4.273,6.878,8.216, \ldots 2 n+\frac{5}{2}
$$

## Charge-4 operator

- Dimension of operator with particle number $\mathrm{N}>3$ can only be obtained numerically
- Nishida and DTS 2007: equal to ground state energy of $N$ unitary fermions in a harmonic trap
- $\Delta\left[O_{4}\right]=5.0 \pm 0.1$ (cf. free theory: 8 )


## 

- One can compute two-point functions by inserting a complete set of states

$$
\langle 0| O(t, \mathbf{x}) O^{\dagger}(0)|0\rangle=\sum_{n}\langle 0| O(0)|n\rangle e^{-i E_{n} t+i \mathbf{P}_{n} \cdot \mathbf{x}}\langle n| O^{\dagger}(0)|0\rangle
$$

- Also constrained by Schrödinger symmetry
- 2-point function

$$
\left\langle O(t, \mathbf{x}) O^{\dagger}(0, \mathbf{0})\right\rangle=\frac{C}{t^{\Delta_{o}}} \exp \left(\frac{i M_{O} x^{2}}{2 t}\right)
$$

- In momentum space

$$
\left\langle O O^{\dagger}\right\rangle(\omega, \mathbf{p}) \sim\left(\frac{\mathbf{p}^{2}}{2 M_{O}}-\omega\right)^{\Delta_{O}-5 / 2}
$$

# NRCFT in real world: neutrons 

- $a \approx-19 \mathrm{fm}, r_{0} \approx 2.8 \mathrm{fm}$
- NRCFT in energy range between $\hbar^{2} / m a^{2} \sim 0.1 \mathrm{MeV}$ and $\hbar^{2} / m r_{0}^{2} \sim 5 \mathrm{MeV}$
- Consequence: power-law behavior in processes with final state neutrons
- "Unnuclear Physics" Hammer, DTS 2021 nonrelativistic version of Georgi's "unparticle physics"


## "UnNuclear physics"



$$
P\left(A_{1}+A_{2} \rightarrow B+3 n\right)=P\left(A_{1}+A_{2} \rightarrow B+\mathscr{U}\right) P(\mathscr{U} \rightarrow 3 n)
$$

when energy scale of primary reaction is larger than $\mathscr{U} \rightarrow 3 n$
$\mathscr{U}=$ "unnucleus" = field in NRCFT

## Rates of unnuclear processes



- Near end point: $\frac{d \sigma}{d E} \sim\left(E_{0}-E\right)^{\Delta-\frac{5}{2}}, \Delta=$ dimension of $\mathscr{U}$


## Nuclear reactions

- $\frac{d \sigma}{d E} \sim\left(E_{0}-E\right)^{\alpha} \quad \alpha=\Delta-\frac{5}{2}$
- ${ }^{3} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{n}$
$\Delta$
$\alpha$
2
-0.5 Watson-Migdal I950's
- $\pi^{-}+3 \mathrm{H} \rightarrow \gamma+3 \mathrm{n}$
4.27
1.77
- ${ }^{4} \mathrm{He}+8 \mathrm{He} \rightarrow{ }^{8} \mathrm{Be}+4 \mathrm{n} \quad 5.0 \quad 2.5$


## Comparison with "experiment"



Golak et al. PRC 98, 054001 (2018)

NRCFT as transient fixed point


## Deformations of NRCFT

- Dimensional counting

$$
S=\int \underbrace{d t}_{-2} \underbrace{d^{3} x}_{-3}\left(\mathscr{L}_{\mathrm{CFT}}+\text { deformations }\right)
$$

- operators with $\operatorname{dim}<5$ : relevant; dim $>5$ : irrelevant
- one relevant deformation: $\left[\mathrm{O}_{2}^{\dagger} \mathrm{O}_{2}\right]=4$
- Leading Galilean-invariant irrelevant deformation:

$$
O_{2}^{\dagger}\left(\partial_{t}+\frac{\nabla^{2}}{4}\right) O_{2} \quad \operatorname{dim}=6
$$

## Away from conformality

- Finite scattering length and effective range can be treated as perturbation away from NRCFT

$$
L=L_{\mathrm{CFT}}+\frac{1}{a} O_{2}^{\dagger} O_{2}-r_{0} O_{2}^{\dagger}\left(i \partial_{t}+\frac{1}{4} \nabla^{2}\right) O_{2}
$$

- Contribution to $\left\langle O_{3} O_{3}^{\dagger}\right\rangle$ can be computed using conformal perturbation theory S.D. Chowdhury, R. Mishra, DTS 2309.15177

$$
\frac{d \sigma}{d E} \sim \omega^{\Delta-5 / 2}\left(1+\frac{c_{1}}{a_{0} \sqrt{m \omega}}+c_{2} r_{0} \sqrt{m \omega}\right)
$$

## Conformal perturbation theory

$$
\begin{aligned}
& \left\langle O_{3}(x) O_{3}^{\dagger}(0)\right\rangle=\frac{1}{Z} \int \mathscr{D} \psi O_{3}(x) O_{3}^{\dagger}(0) e^{i S_{\mathrm{CFT}}+\frac{i}{a} \int_{y} O_{2}^{\dagger}(y) O_{2}(y)} \\
& =\left\langle O_{3}(x) O_{3}^{\dagger}(0)\right\rangle_{0}+\frac{1}{a} \int d y\left\langle O_{3}(x) O_{2}^{\dagger}(y) O_{2}(y) O_{3}^{\dagger}(0)\right\rangle_{0} \\
& \frac{d \sigma}{d E} \sim \omega^{\Delta-5 / 2}\left(1+\frac{c_{1}}{a \sqrt{m \omega}}\right) \quad \begin{array}{l}
\Delta=4.273 \\
c_{1}=2.642
\end{array}
\end{aligned}
$$

## Effective-range correction

- Effective range correction proportional to

$$
\frac{\Gamma\left(\frac{d}{2}+s-2\right)}{\Gamma\left(3-\frac{d}{2}\right) \Gamma(d-3)}=0
$$

- Vanishes at physical dimension $d=3$, but not in fractional spatial dimension
- we do not understand this
- Also observed for high-charge operators Beane Orlando Reffert (2024)


## Open questions

- Can one resum all $1 / a$ correction and determine the correlator along the whole RG flow?
- Can be done for $O_{2}$

$$
\left\langle O_{2} O_{2}^{\dagger}\right\rangle=\left(\sqrt{\frac{p^{2}}{4}-p_{0}}-\frac{1}{a}\right)^{-1}
$$

but needs to be down for charge-3 operators

- Charge-4 operators and higher?
- High-charge limit Beane Orlando Reffert 2403.18898


## Conclusion

- NR conformal field theories have Schrödinger symmetry
- Example: fermions at unitarity
- Approximately realized by neutrons in nuclear physics
- Leads to a power-law behavior of differential cross sections of certain processes near threshold
- Nonrelativistic conformal perturbation theory
- the full power of NRCFT still to be explored

