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Neutron stars are cool
Formed in gravitational core-collapse supernova explosions, neutron
stars are the most compact stars in the Universe.

Nuclear physics:

M ∼ 1 − 2M⊙
R ∼ 10 km
⇒ ρ ∼ 1015 g cm−3

Energy scale: MeV

“cold” ≲ 1010 K ≲ “hot”

Neutron stars are initially very hot (∼ 1012 K) but cool down to
∼ 109 K within days by releasing neutrinos.

Their dense matter is thus expected to undergo various phase
transitions, as observed in terrestrial materials at low-temperatures.



Neutron star interior

picture taken from Haensel, Potekhin, Yakovlev, “Neutron Stars” (Springer, 2007)

The mantle may consist of very exotic configurations so called
nuclear “pastas” in a neutron superfluid.
Blaschke&Chamel, Astrophys. Space Sci. Lib. 457, eds L. Rezzolla, P. Pizzochero, D.
I. Jones, N. Rea, I. Vidaña p. 337-400 (Springer, 2018), arXiv:1803.01836

https://doi.org/10.1007/978-3-319-97616-7_7
https://doi.org/10.1007/978-3-319-97616-7_7
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Nuclear pastas in neutron star



Nuclei in dense stellar environments
Back in 1971, Baym, Bethe and Pethick showed within the liquid-drop
picture that the existence of nuclei in dense matter arises from a
detailed balance between surface and Coulomb effects:

Esurf = 2ECoul

They anticipated that nuclei would become unstable at some point:

Baym, Bethe, Pethick, Nucl. Phys. A175, 225 (1971)

https://doi.org/10.1016/0375-9474(71)90281-8


Nuclei in neutron-star crust vs ordinary nuclei
Solving the HF equations in spherical Wigner-Seitz cells in 1973,
Negele&Vautherin found that both types of nuclei look similar:

Negele&Vautherin,Nucl.Phys.A207,298(1973)

But they were not able to probe the existence of nuclear bubbles
because of numerical instabilities.

https://doi.org/10.1016/0375-9474(73)90349-7
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Limitations of the Wigner-Seitz approach

The W-S approach is unreliable ≳ 0.02 fm−3 due to spurious shell
effects induced by approximate boundary conditions.
Chamel et al, PRC75, 055806 (2007); Pastore et al, J.Phys.G44,094003 (2017)

Unbound neutron energy levels of zirconium isotopes with N = 160
(70 unbound) in a body-centered cubic lattice at n̄ = 4 × 10−4 fm−3:

W-S approximation band theory of solids
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.75.055806
https://iopscience.iop.org/article/10.1088/1361-6471/aa8207
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.75.055806


“Percolating network of linked nuclei”

In 1982, Ogasawara and Sato speculated that nuclei may globally
connnect by analogy with percolation networks:

Ogasawara&Sato, Prog. Theor. Phys. 68, 222 (1982)

https://academic.oup.com/ptp/article/68/1/222/1881844


Nuclear "pastas": first predictions
Nuclear "pastas" were first studied based on liquid-drop models.
Ravenhall et al., PRL50, 2066 (1983);Hashimoto et al., PTP71, 320 (1984)
Oyamatsu et al., PTP 72, 373 (1984)

With increasing filling fraction (u ≳ 0.2): gnocchi (S), spaghetti (C),
lasagna (B), bucatini (CH), and Swiss cheese (SH).

However, the existence of nuclear pastas can be altered by various
corrections (e.g., neutron skin, curvature, etc).

https://doi.org/10.1103/PhysRevLett.50.2066
https://doi.org/10.1143/PTP.71.320
https://doi.org/10.1143/PTP.72.373
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Nuclear pastas in neutron stars
According to recent liquid-drop model calculations, pastas could
represent about 50% of the mass of neutron-star crust.
e.g. Newton et al. EpJA58, 69 (2022); Dinh Thi et al., A&A 654, A114 (2021)

W. G. Newton, Nature Phys. 9, 396 (2013)

Pastas could have implications for thermal and dynamical evolutions
of neutron stars and their magnetic field, gravitational-wave emission.

https://doi.org/10.1140/epja/s10050-022-00710-0
https://doi.org/10.1051/0004-6361/202141192
https://doi.org/10.1038/nphys2663


Quantum physics of nuclear pastas

To which extent do shell effects and nuclear pairing impact the
existence of nuclear pastas?

In practice, one must solve the Hartree-Fock-Bogoliubov equations
for both neutrons and protons (q = n,p):
∑
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∆q(rrr) = 2
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δñq(rrr)∗
is the potential responsible for nucleon pairing

nq(rrr), τq(rrr), JqJqJq(rrr) . . . are defined from the density matrices

nq(rrr , σ; r ′r ′r ′, σ′) = ⟨Ψ|cq(r ′r ′r ′, σ′)†cq(rrr , σ)|Ψ⟩
ñq(rrr , σ; r ′r ′r ′, σ′) = −σ′⟨Ψ|cq(r ′r ′r ′,−σ′)cq(rrr , σ)|Ψ⟩,

which in turn depend on ψ(q)
1 (rrr , σ) and ψ(q)

2 (rrr , σ).
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δñq(rrr)∗
is the potential responsible for nucleon pairing

nq(rrr), τq(rrr), JqJqJq(rrr) . . . are defined from the density matrices

nq(rrr , σ; r ′r ′r ′, σ′) = ⟨Ψ|cq(r ′r ′r ′, σ′)†cq(rrr , σ)|Ψ⟩
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Quantum physics of nuclear pastas

The HFB equations are highly nonlinear and computationally
challenging to solve in 3D in the pasta region (N ∼ 103).

Extended Thomas-Fermi+Strutinsky Integral (ETFSI) approach:
semiclassical expansion in powers of ℏ: the energy E
becomes a functional of nq(rrr) and their derivatives only.
shell effects and pairing are added perturbatively and
consistently via the SI theorem.
allowance for different (fixed) pasta shapes,
to speed-up the computations, nq(rrr) are parametrized.

Pearson&Chamel, Phys.Rev.C105,015803(2022); Phys.Rev.C101,015802(2020)

The ETFSI method is a fairly accurate and computationally very fast
approximation to the HFB equations
Shelley&Pastore, Universe 6, 206 (2020)

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.105.015803
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.101.015802
https://doi.org/10.3390/universe6110206
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Brussels Skyrme functionals BSk(G)

We have fitted a series of nuclear energy-density functionals with full
HFB calculations based on extended Skyrme effective interactions

Experimental data/constraints:
∼ 2300 atomic masses (rms ∼ 0.5 − 0.6 MeV/c2)
∼ 900 nuclear charge radii (rms ∼ 0.03 fm)
symmetry energy 29 ≤ J ≤ 32 MeV
incompressibility Kv = 240± 10 MeV (giant resonances in nuclei)

Many-body ab initio calculations:
equation of state of pure neutron matter
1S0 pairing gaps in nuclear matter
effective masses in nuclear matter (+giant resonances in nuclei)
stability against spin and spin-isospin fluctuations

Grams et al., Eur. Phys. J. A 59, 270 (2023)

https://doi.org/10.1140/epja/s10050-023-01158-6


BSk22-26 family
BSk22-26 were adjusted to different values of J = S(n0). The fit to
nuclear masses actually fixes S(n) around n ∼ 0.1 fm−3:
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Goriely, Chamel, Pearson, Phys.Rev.C 88, 024308 (2013)

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.88.024308


Nuclear-matter parameters

BSk22 BSk23 BSk24 BSk25 BSk26
av [MeV] -16.088 -16.068 -16.048 -16.032 -16.064
n0 [fm−3] 0.1578 0.1578 0.1578 0.1587 0.1589
J [MeV] 32.0 31.0 30.0 29.0 30.0
L [MeV] 68.5 57.8 46.4 36.9 37.5

Ksym [MeV] 13.0 -11.3 -37.6 -28.5 -135.6
Kv [MeV] 245.9 245.7 245.5 236.0 240.8
K ′ [MeV] 275.5 275.0 274.5 316.5 282.9
M∗

s /M 0.80 0.80 0.80 0.80 0.80
M∗

v /M 0.71 0.71 0.71 0.74 0.65
NeuM BHF BHF BHF BHF APR

Lower and higher values of J were considered but yielded
substantially worse fits to atomic masses.

BHF: ’V18’ from Li & Schulze, PRC 78, 028801 (2008)
APR: ’A18 + δv + UIX∗’ from Akmal et al., PRC 58, 1804 (1998)

https://doi.org/10.1103/PhysRevC.78.028801
https://doi.org/10.1103/PhysRevC.58.1804


Neutron-matter constraint
BSk22-26 are in reasonably good agreement with more recent
neutron-matter calculations based on chiral effective-field theory:
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Nuclear pastas with ETF(SI) approach
Ignoring SI correction (pure ETF calculations):

Similar pasta sequence as liquid-drop models
Negligible impact (< 1%) on the equation of state

Pearson, Chamel, Potekhin, Phys. Rev. C 101, 015802 (2020)

With SI correction, spaghetti are strongly disfavored!
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Quantum structure of pastas
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Two competing effects:
The narrower potential for spaghetti and lasagna tends to shift
the energy levels to higher values than for spheres.
More nucleons can fill in the interlevel spacing for lasagna than
for spaghetti.

Shchechilin et al., Phys. Rev. C in press

https://arxiv.org/abs/2404.04020


Nuclear pastas and symmetry energy - ETF
Pasta phases are more likely to appear for models with higher values
of the symmetry energy at the relevant densities (BSk22 vs BSk25):
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.108.025805


Nuclear pastas and symmetry energy - ETFSI
Pasta phases occupy a much narrower range of densities, and
correlations with symmetry energy vanish:
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.108.025805


Nuclear pastas abundances in neutron stars

The pasta mantle shrinks dramatically with shell effects!
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Role of the nucleon density parametrization

At very high densities, results are sensitive to the choice of the
parametrization of nq(ξ) in the Wigner-Seitz cell of “radius” R.

Writing the nucleon density as nq(ξ) = nBq + nΛq fq(ξ),

the popular ansatz (nBq , nΛq , Cq , aq are free parameters)

f FD
q (ξ) =

1

1 + exp
(

ξ−Cq
aq

)

does not satisfy the boundary condition
dnq

dξ
(ξ = R) = 0.

our new ansatz is

f SoftD
q (ξ) =

1

1 +
(

Cq−R
Cq

)2 (
ξ

ξ−R

)2
exp

(
ξ−Cq

aq

)

satisfies
dnq

dξ
(ξ = 0) =

dnq

dξ
(ξ = R) = 0.

We also consider

f 3FD
q (ξ) = f FD

q (−ξ) + f FD
q (ξ) + f FD

q (2R − ξ)− f FD
q (−R)− 2f FD

q (R)
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)2
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Role of the nucleon density parametrization

All parametrizations agree up to the point where pastas first
appear at n̄ ≈ 0.07 fm−3.
The two new parametrizations yield more stable configurations
(lower energies).
Both predict lasagna interspersed among gnocchis.
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Neutron superfluidity in neutron-star
crusts



Superstars
The huge gravity of neutron stars produces the highest-Tc and largest
superfluids and superconductors known in the Universe!

Neutron stars ∼ 1010∼ 1010∼ 1010 K
...

...
LaH10±x 260 K
Cuprates 1 − 130 K
Electrons in metals 1 − 25 K
Helium-4 2.17 K
Helium-3 2.491 × 10−3 K
Bosonic condensates ∼ 10−6 K
Fermionic condensates ∼ 10−8 K

Predicted long ago, these quantum phases may be probed through
astrophysical observations.



Pulsar frequency glitches and superfluidity
Pulsars are spinning very rapidly with extremely stable periods
Ṗ ≳ 10−21, outperforming the best atomic clocks!

Still, some pulsars have been found to suddenly
spin up (in less than a minute).

672 glitches have been detected in 225 pulsars.
http://www.jb.man.ac.uk/pulsar/glitches.html

Recent review: Antonopoulou, Haskell, Espinoza, Rep.
Prog. Phys. 85, 126901 (2022)

Experimental glitches with ultracold atoms
Poli et al., PRL 131, 223401 (2023)

Pulsar glitches provide strong evidence for the existence of a neutron
superflow in neutron-star crusts driven by the pinning of quantized
vortices. But the superfluid dynamics remains poorly understood.

http://www.jb.man.ac.uk/pulsar/glitches.html
https://iopscience.iop.org/article/10.1088/1361-6633/ac9ced
https://iopscience.iop.org/article/10.1088/1361-6633/ac9ced
https://doi.org/10.1103/PhysRevLett.131.223401


Time-dependent Hartree-Fock-Bogoliubov theory
The dynamics of nuclear superfluids (q = n,p) is here described by
the time-dependent Hartree-Fock-Bogoliubov equations:
(

hq(rrr , t)− λq ∆q(rrr , t)
∆q(rrr , t)∗ −hq(rrr , t)∗ + λq

)(
ψ
(q)
1 (rrr , t)

ψ
(q)
2 (rrr , t)

)
= iℏ

∂

∂t

(
ψ
(q)
1 (rrr , t)

ψ
(q)
2 (rrr , t)

)

hq(rrr , t) ≡ −∇∇∇ · ℏ2

2m⊕
q (rrr , t)

∇∇∇+ Uq(rrr , t)−
i
2
{IqIqIq(rrr , t),∇∇∇}+ . . .

ℏ2

2m⊕
q (rrr , t)

=
δE

δτq(rrr , t)
, Uq(rrr , t) =

δE
δnq(rrr , t)

, IqIqIq(rrr , t) =
δE

δjqjqjq(rrr , t)

∆q(rrr , t) = 2
δE

δñq(rrr , t)∗
= |∆q(rrr , t)|eiϕq(rrr ,t)

with mean fields defined via the particle and pair density matrices
(thermal averages) expressible in terms of ψ(q)

1 (rrr , t) and ψ(q)
2 (rrr , t)

nq(rrr , σ; r ′r ′r ′, σ′; t) =< cq(r ′r ′r ′, σ′; t)†cq(rrr , σ; t) >

ñq(rrr , σ; r ′r ′r ′, σ′; t) = −σ′ < cq(r ′r ′r ′,−σ′; t)cq(rrr , σ; t) >
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Superfluid velocity, momentum and mass transport
The superfluid velocity defined through the phase of the pairing field

∆q(rrr , t) = |∆q(rrr , t)|eiϕq(rrr ,t) ⇒ VqVqVq(rrr , t) =
ℏ

2mq
∇∇∇ϕq(rrr , t)

is neither equal to ℏjqjqjq/ρq where jqjqjq is the momentum density

jqjqjq(rrr , t) = − i
2

∑

σ=±1

∫
d3r ′r ′r ′ δ(rrr − r ′r ′r ′)(∇∇∇−∇′∇′∇′)nq(rrr , σ; r ′r ′r ′, σ; t)

nor to the velocity

vqvqvq(rrr , t) =
mq

m⊕
q (rrr , t)

ℏjqjqjq(rrr , t)
ρq(rrr , t)

+
IqIqIq(rrr , t)

ℏ

associated with mass transport

∂ρq

∂t
+∇∇∇ · (ρqvqvqvq) = 0

Chamel & Allard, PRC100, 065801 (2019); Allard & Chamel, PRC103, 025804 (2021)

https://doi.org/10.1103/PhysRevC.100.065801
https://doi.org/10.1103/PhysRevC.103.025804
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Neutron superfluidity in neutron-star crusts
The breaking of translational symmetry leads to the depletion of
the superfluid reservoir.
Leggett, PRL 25, 1543 (1970)

In the presence of a superflow with velocity VnVnVn, the average neutron
mass current in the rest frame of the neutron-star crust is

ρ̄i
n ≡ 1

V

∫
d3r ρn(rrr , t)v i

n(rrr , t) =
∑

j

ρij
sV̄n j

Treating the crust as a polycrystal ρ̄n̄ρn̄ρn = ρSV̄nV̄nV̄n = ρn
mn

m⋆
n
V̄nV̄nV̄n.

The superfluid density ρS < ρn (m⋆
n > mn) is a

current-current response function.

This “is a derived concept and is not the density
of anything”.

Feynman, Statistical Mechanics: A Set of Lectures.

Review: Chamel, J. Low Temp. Phys. 189, 328 (2017)

https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1007/s10909-017-1815-x


Band structure and Fermi surface

Bragg scattering leads to strong
distortions of the Fermi surface.

Avoided band crossings where

|∇∇∇kkkεαkkk | ≈ 0

translate into necks and holes
reducing the Fermi surface area.

Both effects suppress the
superfluid density.

In the limit of small currents and
weak coupling ∆αkkk/εF → 0:

ρS ≈ m2
n

12π3ℏ2

∑

α

∫

F
|∇∇∇kkkεαkkk |dS(α)

Picture made with XCrySDen



Neutron superfluid density from 3D band structure

Results of full 3D band-structure calculations with BCS pairing in
the limit of small currents:

∆ (MeV) ∆/εF ρS/ρn (%)
1.59 0.0869 7.50
1.11 0.0604 7.50

0.770 0.0420 7.51
0.535 0.0292 7.54
0.372 0.0203 7.60
0.259 0.0141 7.66
0.180 0.00981 7.71
0.125 0.00682 7.76
0.0869 0.00474 7.80
0.0604 0.00330 7.82
0.0420 0.00229 7.84

baryon density n̄ = 0.03 fm−3

bcc lattice spacing 47.3 fm
1550 neutrons in the Wigner-Seitz cell

25 × 25 × 25 points (δr ∼ 0.95 fm)
∼ 1300 bands (half without pairing)
integrations with 1360 special kkk points
(65 280 kkk points in the first Brillouin zone)

∼ 106 s.p. wavefunctions

The superfluid density is strongly suppressed ρS ≪ ρn.
The superfluid density is not very sensitive to ∆ (δρS/ρS ≲ 4%).



Superfluid reservoir and giant pulsar glitches
This challenges the standard model of pulsar glitches.
Chamel, PRL 110, 011101 (2013)

The inferred mass of the Vela pulsar is
much lower than expected.

For such stars, the equation of state
(n̄ ≲ 0.23 − 0.33 fm−3) is fairly well
constrained by laboratory experiments.

The superfluid in the crust does not
carry enough angular momentum!

Delsate et al., PRD 94, 023008 (2016)

PSR B0833-45

The superfluid in the core is involved in glitches.
Sourie & Chamel, MNRAS 493, L98 (2020)

The suppression of ρS is overestimated by the BCS theory.
Watanabe&Pethick,PRL119, 062701 (2017); Sekizawa et al.,PRC105, 045807
(2022); Almirante&Urban, PRC109, 045805 (2024)

https://doi.org/10.1103/PhysRevLett.110.011101
https://doi.org/10.1103/PhysRevD.94.023008
https://doi.org/10.1093/mnrasl/slaa015
https://doi.org/10.1103/PhysRevLett.119.062701
https://doi.org/10.1103/PhysRevC.105.045807
https://doi.org/10.1103/PhysRevC.105.045807
https://doi.org/10.1103/PhysRevC.109.045805
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Finite superflow and Landau’s critical velocity
What happens for finite superflows?

Ignoring spatial inhomogeneities, the HFB equations can be solved
analytically. An effective superfluid velocity naturally emerges:

VqVqVq ≡ mq

m⊕
q

VqVqVq +
IqIqIq
ℏ

The order parameter ∆q of the superfluid phase remains unchanged
provided Vq < VLq , the critical velocity from Landau’s criterion

VLq ≡ VFq

√√√√ µq

2εFq

[√
1 +

(
∆q

µq

)2

− 1

]
≈ ∆q

ℏkFq

This is the generalization to nuclear superfluids of the expression
obtained in a single cold Fermi gas
Combescot, Yu Kagan, Stringari, Phys. Rev. A 74, 042717 (2006)

Allard & Chamel, Phys. Rev. C 103, 025804 (2021)

https://doi.org/10.1103/PhysRevA.74.042717
https://doi.org/10.1103/PhysRevC.103.025804
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Gapless superfluidity

Superfluidity is not destroyed for super Landau superflow Vq ≥ VLq ,
but ∆q decreases and eventually vanishes for Vq = Vcq ≈ 1.36VLq . In
this intermediate regime, superfluidity becomes gapless:
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A normal fluid of quasiparticles excitations is present even at T = 0.
Allard & Chamel, Phys. Rev. C 103, 025804 (2021); Phys. Rev. C 108, 045801 (2023)
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Astrophysical implications
Superfluidity can be probed from the cooling of neutron-star crusts
after the end of an accretion episode

Wijnands, Degenaar, Page, J. Astrophys. Astron. 38, 49, (2017)

https://doi.org/10.1007/s12036-017-9466-5


Observational puzzles: KS 1731−260
KS 1731−260 appeared colder than expected after ∼ 3000 days:

Cackett et al., ApJ 722, L137 (2010)
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Observational puzzles: MXB 1659−29
MXB 1659−29 exhibited an unexpected late-time cooling:

Cackett et al., ApJ 774, 131 (2013)
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Observational evidence of gapless superfluidity

Within standard cooling models, the thermal relaxation is too fast due
to the suppression of the neutron specific heat.
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cooling due to the huge enhancement of the neutron specific heat.
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Conclusions & Perspectives: Part I
We have studied the existence of nuclear pastas in neutron-star
crusts based on precision-fitted nuclear functionals:

purely semiclassical calculations lead to usual pasta phases
with quantum corrections, pastas are strongly disfavored.

On-going:
Error assessment and further improvement of ETFSI method
Full 3D HFB calculations of nuclear pastas (Nikolai Shchechilin)



Conclusions & Perspectives: Part II
We have studied neutron superfluidity in neutron-star crusts:

neutron superfluidity is suppressed due to Bragg scattering
super Landau superflow naturally explains the observed cooling
of transiently accreting neutron stars.

On-going:
Sensitivity analysis of neutron-star crust cooling (Valentin Allard)
Full 3D time-dependent HFB calculations of neutron superfluidity
(Piotr Magierski, Gabriel Wlazłowski, Daniel Pȩcak)

Pȩcak et al., arXiv:2403.17499

https://arxiv.org/abs/2403.17499


Unified equations of state
We have constructed thermodynamically consistent equations of
state for neutron stars:

isolated neutron stars
Pearson et al.,MNRAS 481, 2994 (2018)

magnetars
Mutafchieva et al., Phys. Rev. C 99, 055805 (2019)

accreting neutron stars
Fantina et al., A&A 620, A105 (2018); A&A 665, A74 (2022)

Tables available on CompOSE: https://compose.obspm.fr/

Freely available computer codes and data for the outer crust:
http://doi.org/10.5281/zenodo.3719439
http://doi.org/10.5281/zenodo.3839787

Consistent 1S0 pairing gaps: Allard&Chamel, Universe 7(12), 470 (2021)

Gravito-electric and magnetic Love numbers up to ℓ = 5:
Perot&Chamel,Phys.Rev.C103, 025801 (2021)

https://doi.org/10.1093/mnras/sty2413
https:/doi.org/10.1103/PhysRevC.99.055805
https://doi.org/10.1051/0004-6361/201833605
https://doi.org/10.1051/0004-6361/202243715
https://compose.obspm.fr/
http://doi.org/10.5281/zenodo.3719439
http://doi.org/10.5281/zenodo.3839787
https://doi.org/10.3390/universe7120470
https:/doi.org/10.1103/PhysRevC.103.025801
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