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Outline

1 Chiral EFT (χEFT) and nuclear forces

2 Bayesian uncertainty quantification (UQ) in ab initio nuclear theory

3 Many-body perturbation theory (MBPT) calculations of nuclear matter

4 Posterior predictive distributions for nuclear matter (preliminary!)

5 New χEFT bands for dense matter equation of state (EOS)
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Making predictions in nuclear theory

The time-independent Schrödinger equation:

(Ĥ0 + V̂ ) |Ψ⟩ = E |Ψ⟩

We need:

1 a model for the interaction potential V̂ :
chiral effective field theory

2 a many-body method for solving the S.E.

2-body scattering: Solving Lippmann-Schwinger equation

Many-body methods: NCSM, QMC, . . . (light systems, A ≲ 16), CC, IMSRG,
MBPT, . . . (not-so-light systems)
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χEFT and nuclear forces

χEFT:

• Systematic expansion in low momenta:
(Q/Λb)

k

• Power counting: assigns each contribution to
an order ka

• Orders designated leading order (LO),
next-to-leading order (NLO), N2LO, N3LO,
. . .

• Many-body forces enter consistently at
sub-leading orders

aNo contributions for k = 1.

Figure adapted from Entem et al.,
Phys. Rev. C 96 (2017).

(Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser,
Meißner, . . . )
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χEFT and nuclear forces

• Two main variants: ∆-less (previous slide)
and ∆-full

• Degrees of freedom in ∆-less: nucleons and
pions

• Additionally in ∆-full: ∆(1232)-isobar

Figure from Machleidt & Entem,
Phys. Rept. 503 (2011).
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χEFT and nuclear forces - UQ

χEFT (in principle) enables uncertainty
quantification:

• Each order suppressed by ∼ (Q/Λb) < 1
(gives a handle on truncation errors)

• Short-range physics accounted for by
unknown low-energy constants (LECs)

• Number of LECs grows with order: ∼ 15 at
N2LO, ∼ 30 at N3LO

• LECs (α⃗) fitted to scattering and other
nuclear observables

Figure adapted from Entem et al.,
Phys. Rev. C 96 (2017).

Bayesian UQ for χEFT pioneered by the BUQEYE collaboration: Furnstahl,
Melendez, Phillips, Wesolowski . . .
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Bayesian UQ in ab initio nuclear theory

Based on my PhD work in collaboration with Andreas Ekström and Christian
Forssén (and BUQEYE): Svensson et al., Phys. Rev. C 105 (2022), Phys. Rev. C
107 (2023), arXiv:2304:02004; Wesolowski et al., Phys. Rev. C 104 (2021)
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Bayesian UQ in ab initio nuclear theory

Most common approach to fitting LECs: optimization to (mainly 2-body) nuclear
observables/phaseshifts

Has yielded many accurate interactions. To mention a few: Entem & Machleidt
Phys. Rev. C 68 (2003), Hebeler et al. Phys. Rev. C 83 (2011), Carlsson et al.
Phys. Rev. X 6 (2016), Jiang et al. Phys. Rev. C 102 (2020)

But rigorous UQ is lacking
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Bayesian inference and predictions

We make predictions of y using a posterior predictive distribution (PPD):

pr(y|D, I) =

∫
pr(y|α⃗, I)pr(α⃗|D, I)dα⃗

For this we need the joint posterior for the LECs pr(α⃗|D, I). Bayes’ theorem:

pr(α⃗|D, I)
Posterior

∝ pr(D|α⃗, I)
Likelihood

× pr(α⃗|I)
Prior

We include experimental errors and truncation errors1 in our analyses. Our priors
are grounded in EFT.

1Both uncorrelated and (in the latest paper) correlated.
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(Breaking) the curse of dimensionality

Problem: pr(α⃗|D, I) is multidimensional (∼ 15-30 parameters). Must use
Markov chain Monte Carlo (MCMC).

Even with MCMC, sampling pr(α⃗|D, I) is very challenging due to (i) the
dimensionality and (ii) computational cost of calculating observables.

Our approach: use Hamiltonian Monte Carlo2 (HMC), which is uniquely
suited to high-dimensional problems

HMC uses gradients of the posterior to increase sampling efficiency.

We have found that HMC is ∼ 5 times more efficient than the popular Emcee3

in our application.

2Duane et al., Phys. Lett. B 195(2) (1987)
3Foreman-Mackey et al., PASP 125 (2013)
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LEC posteriors −→ observable PPDs
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Demonstrating the sampling capabilities of HMC

31-dimensional N3LO
LEC posterior [Phys.
Rev. C 107 (2023)].

I can zoom in if you
want to see details!
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Inferring three-nucleon forces

Three-nucleon forces play an
essential role in the description of
many-body systems.

In collaboration with BUQEYE we have
inferred the two leading 3N LECs
(cD, cE).

Practically usable data are rather
lacking as many observables provide
degenerate constraints.

cD cE

Posterior for three-nucleon force LECs
cD, cE [Wesolowski, IS, et al., Phys. Rev. C
104 (2021)] 12



Some take-aways

Fully Bayesian UQ is now possible in nuclear theory.

but

Much work remains on accurate error modeling4. The fixed-LEC interactions
mentioned earlier provide more reliable results.

4See, e.g., BUQEYE: Millican et al., 2402.13165.
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Goal: combine EOS calculations with Bayesian UQ

MBPT calculations of nuclear matter EOS by Keller et al.:

See also previous work by Christian Drischler
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MBPT calculations of nuclear matter EOS at N3LO

Pure neutron matter Symmetric nuclear matter
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Energy per particle as a function of number density for temperature T = 0, 10, 20 MeV
and proton fraction x = 0.0, 0.1, 0.2, 0.5.

Uncertainty bands using the EKM prescription5 (i.e., not a Bayesian approach):

∆y(k) =
Q

Λb
max

(
|y(k) − y(k−1)|,∆y(k−1)

)

5Epelbaum et al., Eur. Phys. J. A 51 (2015) 15



MBPT calculations of nuclear matter EOS at N3LO

Pure neutron matter Symmetric nuclear matter
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MBPT calculations of nuclear matter EOS at N3LO
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Top: Proton fraction in β-equilibrium as
a function of density

Bottom: Pressure in β-equilibrium as a
function of density
N2LO and N3LO bands up to 1.5n0

Hebeler et al. up to 1.1n0, then a
piecewise polytrope high-density
parametrization

17



Preliminary: PPD for nuclear matter EOS
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Red: PPD for the energy per particle for symmetric nuclear matter at zero temperature.
Blue: results from Keller et al. 2023.

Ongoing work with Achim Schwenk, Kai Hebeler, Hannah
Göttling, Alex Tichai: PPDs for nuclear matter EOS including
LEC variations, correlated truncation errors, MBPT method
error. Arbitrary proton fraction and temperature.

cD cE
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Submitted to ApJL a few weeks ago; see Melissa’s talk tomorrow

Pressure as a function of density for matter
in β-equilibrium.

• New bands include muons in
addition to electrons and
neutrons/protons

• We trust χEFT to higher density
(1.5n0)

• New bands calculated directly in
β-equilibrium; Hebeler bands use an
empirical parametrization

• Plan: map bands to LECs
19



Outlook

• Simultaneous Bayesian inference for 2- and 3-body forces

• Improved modeling of errors—lots of work remains

• Improved UQ for nuclear matter calculations with correlated truncation errors
using Gaussian processes (talk to Hannah Göttling!)

• Improved inferences of neutron star properties as new data become available
(see Melissa’s talk)
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Thank you! Collaborators:

Yannick Dietz
Andreas Ekström
Christian Forssén
Dick Furnstahl
Kai Hebeler
Jonas Keller
Jordan Melendez

Melissa Mendes
Daniel Phillips
Nathan Rutherford
Achim Schwenk
Alex Tichai
Anna L. Watts
Sarah Wesolowski
. . .
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