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In a uniform single component superfluid at zero temperature 

(superfluid He4, He3, neutron matter, Bose and Fermi 

degenerate gases ) the superfluid density is expected to 

coincide with the total density and the velocity of sound at T=0 

is fixed by the compressibility according to the  hydrodynamic

relation 

where is the inverse compressibility
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Main motivations for studying density modulated

superfluids:

- Many experiments available in cold atoms in the 

presence of optical lattices (e.g. Superfluid/Mott

Insulator transition)

- Recent availability of supersolid configurations in 

ultracold atomic gases

- Fermi superfluidity in the inner crust of  neutron stars

- Recent interest in Leggett’s bound to superfluid fraction



Breaking of translational invariance can be the consequence of 

- External potentials (ex. optical lattices, disorder)

- Spontaneous breaking of translational symmetry (supersolids)



Part 1
- Translational invariance is broken by external periodic

perturbation (dilute BEC and unitary Fermi gases in a box) 

- Only a single class of Goldstone modes is present, due to 

spontaneous breaking of phase symmetry (not a supersolid)

(superfluid phonons)

0],[ xPH

Part 2                  
- Both phase symmetry and translational invariance are 

broken spontaneously (supersolid BEC gas in a ring ) 

- Two classes of Goldstone modes

(phonons of mixed superfluid and crystal nature)
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The case of a dilute Bose-Einstein condensate

confined in a box 

- Application of the 1D periodic perturbation

gives rise to stripes

- In a dilute BEC gas, described by Gross-Pitaevskii

theory one can prove that the superfluid fraction (along x)

coincides with  Leggett’s upper bound (1970,1998) 
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The case of a dilute Bose-Einstein condensate

confined in a box 

- Application of the 1D periodic perturbation

gives rise to stripes

- In a dilute BEC gas, described by Gross-Pitaevskii

theory one can prove that the superfluid fraction (along x) 

coincides with  Leggett’s upper bound (1970,1998) 

- On the other hand hydrodynamic theory of 

superfluids predicts the anisotropic result

for the sound velocities, yielding result

for the superfluid fraction (avoiding determination of      )
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A recent exp/theory collaboration with Jean Dalibard’s team 

at the Collège de France, has confirmed the consistency

of the determination of  the superfluid density  based on the 

independent measurement  of Leggett’s integral  and of the 

sound velocities 



A recent exp/theory collaboration with Jean Dalibard’s team 

at the Collège de France, has confirmed the consistency

of the determination of  the superfluid density  based on the 

independent measurement  of Leggett’s integral  and of the 

sound velocities 



- Measurement of Leggett’s integral

(Chauveau et al. PRL 133, 226003)

N=10^5 atoms a box of L= 40 microns

Due to large period of density

modulations (3.94 microns)

in-situ density distribution is

measurable, accounting for 

finite optical resolution
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- Measurement  of  sound velocities 

(Chauveau et al. PRL 133, 226003)

Sound is excited by suddenly removing

a weak linear  perturbation generated  

along x or y and measuring the time 

evolution  the center of mass of the cloud.

The speed of sound is determined 

by the HD relation                   , valid if 

both healing length and period of the potential are much 

smaller than phonon wave length  2L.

- Excellent agreement with theory 

predictions based on TDGP equation   (full lines)
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Comparison between experimental results for superfluid 

fraction obtained using 

Leggett’s approach         and                  ratio of sound velocities

provides a consistent understanding of the suppression of the 

superfluid fraction in the presence of a periodic potential, in 

agreement with the predictions of GP theory
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Validity of  Leggett’s bound , as a 

measure of superfluid  fraction, 

is however limited to dilute Bose gas and to factorized  density 

profiles 

Important deviations  between Leggett’s  bound and actual 

value of superfluid fraction take place 

- in Fermi superfluids, 

- if density profile is not factorized 

(e.g. triangular  optical lattice, isotropic disorder)

- in systems violating Galilean invariance     

(e.g.  spin-orbit coupled superfluids)  
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Actual value of superfluid density in density modulated Fermi 

superfluids can be relevant in the problem of the inner crust

of neutron stars

Can we get useful insight studying  the behavior of superfluidity

in strongly interacting atomic Fermi gases in the 

presence of an external periodic potential ?

Recent collaboration with

Giuliano Orso (Lab MPQ, France)



Randeria 2010

Fermi superfluidity along

the BCS-BEC crossover

Measured vortices

along the crossoverCooper pairs

along the crossover



Rigorous results for superfluid fraction, based on phase twist 

method,  and for Leggett’s bound, in the presence of external

periodic potentials available using sum rule techniques:

Comparison shows that only if identity holds

will Leggett’s bound coincide with 

actual value of superfluid fraction. This is the case of 

- Weakly interacting BEC gas (Bogliubov excitation spectrum)

- Phonon regime of small q where all relevant sum rules are 

exhausted by phonon mode.  True also for strongly interacting

superfluids, including unitary Fermi gas and liquid Helium
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Results for unitary Fermi gas ( )

phonon regime                      large value of                 

Leggett’s bound  is OK          Leggett’s bound overestimates       

Inadequacy of Leggett’s bound is sizable 

even for              in BCS regime of 

small and negative scattering length. 

Phonon regime requires periods larger

than size               of Cooper pairs mkF /
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Experimental measurement of superfluid fraction in Fermi 

superfluid is expected to be best obtained through measurement

of phonon velocity thanks to hydrodynamic relations (holding in 

the presence of  1D periodic potentials) 

Similar to the case of BEC gases, ratio of longitudinal and 

transverse sound velocities yields result

independent of value of compressibility parameter

Waiting for new experiments ! 
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Part 2                  
- Both phase symmetry and translational invariance are broken

spontaneously (supersolid BEC gas in a ring ) 

- Two classes of Goldstone modes

(two phonon modes of  mixed superfluid and crystal nature)
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Can a solid be superfluid ?

(Leggett 1970) 





Can a  gas behave

like a crystal?





In Part 1 we have understood that if only phase symmetry is

spontaneously broken, the superfluid fraction of a density

modulated superfluid determines the velocity of sound according to 

the T=0 hydrodynamic relation

This relation cannot hold in the presence of additional

spontaneous breaking of translational symmetry since

Goldstone theorem predicts two sound velocities both propagating

along the same direction.

Can we measure the superfluid fraction through the measurement of 

the sound velocities ?

What is the link between the superfluid fraction and the sound 

velocities in the case of a supersolid at zero temperature?
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Determination of superfluid fraction from measurement

of sound velocities has pioneering example:

Superfluid Helium at finite temperature



Liquid He

(experiment, Peshkov 1946)
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The case of the unitary Fermi gas at finite temperature

From measurement of first and second sound velocities in the 

unitary Fermi gas one can reconstruct the temperature 

dependence of the 3D superfluid fraction
(Innsbruck-Trento collaboration,  Sidorenkov et al., Nature 2013) 

Superfluid 

helium

gasBoseideal

TT C

2/3)/(1

First measurement of superfluid

density in a Fermi superfluid



Temperatue dependence of superfluid fraction  in a 

2D Kosterlitz-Thouless Bose gas,  based on measurement

of first and second sound velocities
(Christodoulou ….Hadzibabic, Nature 2021) 

First experimental confirmation of the predicted 

(Ozawa and S.S. PRL 2014) jump of second sound 

velocity at the BKT transition



The case of a supersolid at T=0 



NEWS AND VIEWS (NATURE) 

16 October 2019 

Sounds of a supersolid detected in dipolar 

atomic gases for the first time

Ultracold gases of dipolar atoms can exhibit 

fluid and crystalline oscillations at the same 

time, illuminating the ways in which different 

kinds of sound propagate in the quantum state 

of matter known as a supersolid. 

Measurement of the Goldstone modes has been already the 

object of experimental papers in a supersolid dipolar gas 

confined in harmonic trap (axial breathing modes)

However the explicit connection between the propagation of 

sound and the superfluid fraction is largely unexplored



In a recent paper we have addressed the question of the link 

between the propagation of sound and the behavior of the 

superfluid fraction in the case of a dipolar supersolid gas confined

in a ring geometry (hopefully of feasable experimental realization) 



Atomic densities in the ring configuration

(Length of the ring: 49 microns), for different values of the 

relevant interaction parameter

where is the dipolar length, and   

is the s-wave scattering length.

For small values of         the system is in the uniform

superfluid phase. By increasing one enters the 

supersolid phase where droplets are formed over a 

sea of a superfluid gas. For even larger values of        

one enters the crystal phase of well separated droplets
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Protocol for exciting the Goldstone modes

By suddenly releasing a small periodic perturbation of the form

one explores the resulting time dependent oscillations of the 

quantity , obtained solving the extended GP eq. 

In the superfluid phase one observes a single frequency

of the excitation spectrum

of the elongated superfluid

configuration, corresponding to 

In the supersolid phase one instead

observes a beating of two frequencies, 

corresponding to the excitation of 

the two Goldstone modes.  
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To appreciate the potential of the proposed protocol

we have studied the resulting collective frequencies in the 

superfluid phase applying a perturbation of the form

allowing for the study of the excitation spectrum at higher wave

vectors .

We observe the softening of 

the roton spectrum as one

approaches the superfluid

supersolid phase transition

confirming IBK experiment
(Petter et al.

PRL 2019)
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In the supersolid phase the observed signal has typical beating form

with                              approaching, for small q (and hence large L), 

the linear phonon dispersion

with                   the first and second sound velocities.

The sum of the weights fixes the compressibility

in the                     , while the relative 

contribution of second sound to

is related to the sound velocities by the 

independent relation
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Results for the sound velocities as a function of         in a ring trap

The usual hydrodynamic result is consistent with the 

observed velocity only in the superfluid phase. 
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Results for the sound velocities as a function of         obtained by 

solving the time dependent Gross-Pitaevskii eq. in a ring trap

The usual hydrodynamic result is consistent with the 

observed velocity only in the superfluid phase. 
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Similar results for the sound velocities are obtained

in the case  of an infinite tube potential
(Blakie et al.,  Phys. Rev. Res. 5, 033161 (2023);

Platt et al.,  arXiv: 2403.1915)
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Hydrodynamic theory of a 1D supersolid

(Andreev and Lifschtz 1969) Josserand, Pomeau and Rica 2008, Yoo and 

Dorsey (2010) ) 

In a recent paper Hofmann and Zwerger (2021)  have investigated the 

applicability of the hydrodynamic theory of supersolids to a dipolar

supersolid in 1D like configuration, where the layered structure is

reasonably well realized by the presence of droplets and the relavant

parameters are the compressibility the superfluid fraction and the layer

compressibility modulus

At zero temperature the theory predicts the following result for the two

longitudinal sound velocities (Hofmann and Zwerger, J.Stat.Mech. 033104, 2021)

where ,                  with B the layer compressibility modulus

and      the superfluid fraction (strain density coupling set equal to zero)
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Supersolid 1D hydrodynamics provides the long sought relationship

for the superfluid fraction in terms of the two sound velocities

and of

Supersolid relationship generalizes the usual relationship

holding in the presence of a single Goldstone mode
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Using our results of GP simulation for the sound velocities

we can extract the value of the superfluid fraction in the supersolid

phase.

decreases as one increases the 

value of        approaching the 

transition to the crystal phase

of independent droples, while

it increases to unity at the

transition to the superfluid phase.
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How does the value of the superfluid fraction, extracted from the 

values of the sound velocities, compare with the value calculated

using Leggett’s prescription for the non

classical fraction of the moment of inertia ? 

We calculate applying a rotational contraint and 

evaluating the corresponding value of angular momentum

, with         the rigid value of the moment of inertia. 
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How does the value of the superfluid fraction, extracted from the 

values of the sound velocities, compare with the value calculated

using Leggett’s prescription for the non

classical fraction of the moment of inertia ? 

We calculate applying a rotational contraint and 

evaluating the corresponding value of angular momentum

, with         the rigid value of the moment of inertia. 

The excellent agreement confirms the consistency of the extended

Gross-Pitaevskii theory used to calculate the sound velocities with 

the hydrodynamic model for supersolids.
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Our approach also provides the first quantitative evaluation of the 

layer compressibility modulus of a supersolid dipolar gas 

From   the results for

one extracts the layer

compressibility modulus

which vanishes at the 

transition to the superfluid phase
(see also Blakie et al. arXiv: 2403.1915)
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Main conclusion

- Propagation of sound yields useful information on the 

superfluid denisty on density modulated quantum systems

at T=0. 

- Superfluid BEC gas in a box

- Supersolid Dipolar BEC 

gas in a ring 

- Theory predictions for interacting Fermi gases and dipolar

supersolids in a ring are waiting for new experiments
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Closely related projects running in Trento

- Effects of permanent currents and vortex lines on the 

propagation of sound in a supersolid

- Superfluid vs elastic oscillations in higher dimensional

configurations

- Effects of disorder on the propagation of sound in

a superfluid gas 



The Trento BEC team (2019)

Visit our web site 

http://bec.science.unitn.it/


