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Workshop logistics

ECT* code of conduct: Please abide by code of conduct

Exciting program with talks from astrophysics, nuclear physics,
and cold atom physics. Keep broad communities in mind

Round of introductions: Name, Institution, Interests

Ample time for discussions and questions

Coffee breaks and lunches in Villa, covered by ECT*
Social dinner on Wednesday, other dinners are self-organized

Please upload your slides to Indico (preferred), or send to Ines and me

Any other logistics questions?



NEUTRON STAR OBSERVATIONS




THE NEUTRON STAR INTERIOR
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Figure: Watts et al. 2016



FROM NUCLEAR PHYSICS TO TELESCOPE

Forces
between
particles

w
(2]

34

logyoPressure (dyne/cm?)

Equation of state

w
Ul

55 .

—— Nucleonic
-=-=- Quark
Hyperonic
Hybrid
Parametrized

Stellar
structure
equations

14.2 14.4 I14.6 14.8 15.0 15.2
logyo Density (g/cm?3)
Core composition
Neutron @Proton Hyperon
@ o
‘ @ ©
N—
OO0
2z d 2
OAHA0;
G

Nucleonic matter Hyperonic matter

Quark matter

Mass-radius

10 11 12 13 14 15 16
Radius (km)
+ Spin

Exterior space-time

Figure: Adapted from Ray et al. 2019



CONSTRAINTS FROM RADIO PULSAR TIMING

Masses, moments of inertia via relativistic effects.
But also glitches/timing noise (crust/superfluids).....
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CONSTRAINTS FROM X-RAYS




ROTATION-POWERED PULSARS




PULSE PROFILE MODELING
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NICER ON THE ISS

Image: NASA



FUTURE X-RAY TELESCOPES
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CONSTRAINTS FROM GRAVITATIONAL WAVES

* NS-NS and NS-BH mergers
« Tidal deformabilities
« "Mass gap” objects!

 Electromagnetic counterparts

NASA GSFC

m (Mg

8




Extreme matter in neutron stars
cold dense matter up to ~ 10 n, with saturation density n, = 0.16 fm™

governed by strong interactions (QCD)
up to 1-2 n,y: nucleons (neutrons and protons) + electrons (and muons)

chiral effective field theory sets pressure of first few km to inside
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Chiral effective field theory for nuclear forces

Systematic expansion in low momenta (Q/A)"
NN 3N 4N

based on symmetries of strong
wo(¢) Y - —  — interaction (QCD)

long-range interactions governed by

pion exchanges
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Chiral effective field theory calculations of neutron matter

good agreement up to saturation density for neutron matter
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Hebeler et al., ApJ (2013)
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Drischler et al., PRL (2019)
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slope determines pressure of
neutron matter

comparlson to unitary Fermi gas

measured with cold atoms

behavior very similar to 0.1 fm
because neutrons have large
scattering length a, =-18.5 fm

stronger increase towards higher
densities (EOS becomes stiffer)
due to repulsive 3N forces



Chiral effective field theory for nuclear forces

Systematic expansion in low momenta (Q/A)"
NN 3N 4N

large scattering length physics

cold fermions
2 spin states |2)
large a

1) 4 >

neutrons with same density, temperature and spin polarization
have the same properties



Chiral effective field theory for nuclear forces

Systematic expansion in low momenta (Q/Ay)"
3N 4N




Neutron star matter has low concentration of protons

~ 5% proton fraction in denser neutron matter

below ~ 0.5 n, possible pasta phases: clusters/structures of high density
surrounded by neutron (and proton) gas: neutron (proton) drip
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structure / dynamics of neutron star crust and related cold atom physics



Constraints from nuclear experiments

neutron skin = R, —R,
probes neutron matter pressure,
large pressure ~ larger skin

different experiments sensitive
to neutron skin, provides
constraints on matter around n,

neutron skins tightly predicted

in chiral EFT calculations
Arthius et al., arXiv:2401.06675,
Novario et al., PRL (2023)
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Equation of state constraints at intermediate densities

information from astrophysics and heavy-ion collisions
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Supernuclear densities: high speed of sound

What 1s physical origin of
high speed of sound reached
n neutron stars?

How can we better pin down the
equation of state at supernuclear
densities?

Constraints from perturbative
QCD calculations

Annala, Gorda, Kurkela, Vuorinen et al.

Information on relevant degrees
of freedom?
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Koehn et al., arXiv:2402.04172



(= Ronye of Inferacton. o Why Many-Body Quantum systems are
e o vl keeping us so busy and fascinated?
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(= Ronye of Inferacton. o Why Many-Body Quantum systems are
e o vl keeping us so busy and fascinated?
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A Macroscopic ensemble 10° neutral atoms
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old quantum gases = Quantum Fluid

Model systems for different phenomena in the field of solid-states, helium superfluid, neutron stars.

Modulated superfluids

How to extend concepts of superfluidity to
quantum phases breaking translational
symmetry?

ELENA POLI - Rotating dipolar gases: supersolids, vortices and glitches

SANDRO STRINGARI - Propagation of sound in density modulated superfluids



old quantum gases = Quantum Fluid

Model systems for different phenomena in the field of solid-states, helium superfluid, neutron stars.

Modulated superfluids New Exotic Phases

Mapping to exotic phenomena ?

MACIEJ GALKA - Realisation of a Laughlin state of two rapidly rotating fermions

ELINOR KATH - Curved and Expanding Spacetimes in a Bose-Einstein Condensate



old guantum gases = Quantum Fluid

| Transport/Dynamics
| Modulated superfluids | New Exotic Phases

CHRISTOPH EIGEN - Few- and many-body physics with box-trapped 39K Bose gases

THOMAS SCHAEFER - Transport Properties of Ultracold Gases and Dense Matter



Workshop goals

Survey observational data on masses, radii, tidal deformability and
moment of inertia, understand all aspects 1n the modeling processes

Improve our understanding of matter with low proton concentrations
in neutron stars at around nuclear density

Determine whether or not pasta phases are stable

Understand dynamics of pasta phases in neutron stars and supersolid
phases 1n cold Fermi gases

Better pin down the equation of state at supranuclear densities

Understand physical origin of maximum in sound velocity at high
densities deduced from observations of neutron stars

Explore constraints from nuclear experiments in the laboratory

Explore possible cold gas experiments that could 1lluminate
unresolved 1ssues



