

Renormalisation group techniques for polymers on fractal lattices

ANTONIO TROVATO

University of Padova - Department of Physics and Astronomy "G. Galilei"
INFN, Padova Section

Bridging scales: At the crossroads among renormalisation group, multi-scale modelling, and deep learning.
ECT, Trento, April 15-19 2024

Acknowledgments

Somendra Bhattacharjee Ashoka University (Delhi)
Jaya Maji
Flavio Seno
IOP Bhubaneswar
UNIPD - DFA (Physics and Astronomy Dept.)

Maji et al New J Phys 2010
Maji et al Phys Rev E 2014
Maji et al J Stat Mech 2017

Polymer critical behaviour

```
Number of polymers with N monomers:
CN}~\mp@subsup{\mu}{}{N}\mp@subsup{N}{}{v-1}\mathrm{ as N >> 1
\mu= connective constant }->\operatorname{ln}\mu\mathrm{ is the (asymptotic) entropy per monomer
y = entropic exponent
```

Average end-to-end distance (or gyration radius)
[Figure from Hayes, New Scientist 1998]

```
RN}~\mp@subsup{N}{}{v}\mathrm{ as N >> 1; v= thermal exponent
```

Random Walk: $\mathrm{v}=1 / 2 ; \mathrm{y}=1$
(Random non interacting) Self-Avoiding Walk
(d=3): $\quad v=0.5880(15) ; y=1.157(3)$
SWOLLEN PHASE

random walk

SAW and $O(n)$ spin models

Critical behaviour in the infinite N limit \leftrightarrow critical fugacity $z_{c}=1 / \mu Z(z)=\sum_{N=1}^{\infty} c_{N} z^{N} \sim\left(z-z_{c}\right)^{-\gamma}$ High T-expansion of Ising model:

$$
Z_{I}=\operatorname{Tr} \prod\left(1+v s_{i} s_{j}\right) ; v=\tanh \left(J / \kappa_{B} T\right)
$$

Only graphs G consisting of L loops survive! With n-component spins (gas of loops):

$$
Z_{n}=\sum_{G} v^{N} n^{L}
$$

(honeycomb lattice)

In the $\mathrm{n} \rightarrow 0$ limit: free energy per spin component = grand partition function for SA Polygons!

$$
\lim _{n \rightarrow 0} \lim _{N_{s} \rightarrow \infty} \frac{1}{n N_{s}} \ln Z_{n}=\sum_{S A P} v^{N}
$$

$\mathrm{N}_{\mathrm{s}}=$ number of spins/lattice sites v = SAP/SAW fugacity

With the same trick: spin-spin correlation function \leftrightarrow SAW

$$
G_{n}(k, l)=\left\langle\vec{s}_{k} \cdot \vec{s}_{l}\right\rangle ; \lim _{n \rightarrow 0} \lim _{N_{s} \rightarrow \infty} \frac{G_{n}(k, l)}{n N_{s}}=\sum_{S A W k \rightarrow l} v^{N}
$$

SAW on a fractal lattice

[Figure from Maji et al. NJP 2010]

$\mathrm{n}=0$

$\mathrm{n}=1$

$\mathrm{n}=2$

Recursive construction of the Sierpinski gasket:
$\mathrm{d}=\ln 3 / \ln 2 \sim 1.58$
Write recursion equations for restricted partition functions (Dhar 1984)

B
A

With initial conditions:

$$
A_{0}=\sqrt{v} ; B_{0}=v ; C_{0}=0 ; D_{0}=0
$$

C
D
[Figure from Vanderzande "Lattice models of polymers]

RG technique on fractal lattice

[Figure from Vanderzande "Lattice models of polymers]

$$
\begin{aligned}
& \text { Thermal exponent } \quad\left[\frac{d v^{\prime}}{d v}\right]_{v=v_{c} \ldots \ldots}=2^{1 / v}=2 v_{c}+3 v_{c}^{2} \\
& v=0.7986 \ldots
\end{aligned}
$$

A minimal model for DNA melting: Poland-Scheraga

Homogeneous ideal polymer chains interacting with each other only at the same monomer index (complementary base pairing)
always a bound state / no melting transition in $d \leq 2$ when $\sigma=1$
($\sigma<1$ or crossing contraint necessary ford transition at finite T in $\mathrm{d} \leq 2$)

QUANTUM MAPPING monomer index \leftrightarrow imaginary time

DNA melting and bubbles in directed walk models

2 chains

3 chains

Directedness condition \rightarrow different chains interact only at the same monomer index

SAW in $D=d+1 \rightarrow R W$ in d
2 chain model exactly solvable (with pulling force in

Triplex DNA

A third strand may attach to an already formed B-DNA duplex via Hoogsteen or reverse-Hoogsteen hydrogen bonds

Sequence specific binding but strict base pair complementarity may be lost (always 2 Hoogsteen h-bonds per base)

Suggested/hyphotesized to regulate (inhibit) replication, transcription, protein binding to DNA

Potential therapeutic applications \rightarrow delivery mechanism (Dalla Pozza et al. Chem Rev 2022)

Efimov effect (from nuclear physics to cold atoms)

a = scattering length

3 identical bosons can form a bound state when 2 cannot! \rightarrow universal effect

"Efimov DNA": triplex DNA stable when duplex is not?

No Efimov Dna with no bubbles

Y-fork model \rightarrow no bubbles $(\sigma=0)$
Directed walks in D=1+1 (NO crossing): 2 possible steps per base

$$
y=\exp (\varepsilon / T) ; c=\varepsilon_{13}
$$

2 chain transition at $\varepsilon=T \ln 2$
same ε for all chains \rightarrow trivial stabilization of 3 -bound state
$\mathrm{c}=0 \rightarrow$ interactions between chains 1,3 only mediated by interactions with chain 2 : Is Efimov DNA possible with bubbles?

Efimov Dna with bubbles from scaling argument

$\xi_{\|} \sim \xi_{\perp}^{z}$
$z=2$ for $R W$

$$
\Delta F \sim \underset{\substack{-\frac{N}{\xi_{\|}} \\ \text {free energy change } \\ \text { effective universal interaction }}}{R^{z}}=-\frac{\Delta}{R^{2}}
$$

RG recursions for directed chains on Sierpinski gasket

bubbles on Sierpinski gasket

recursive equations
$b_{n+1}=b_{n}^{2}+a_{n}^{2} b_{n}$, for restricted
2 chain partition functions
$c_{n+1}=c_{n}^{2}$,
(crossing allowed and $z=1$)
$d_{n+1}=d_{n}^{2}+2 g_{n}^{2} b_{n}+c_{n}^{2} d_{n}$,

d_{n}
g_{n}

e_{n}

h_{n}

i_{n}

$$
g_{n+1}=a_{n} g_{n}\left(b_{n}+c_{n}\right)
$$

RG recursions to map out the phase diagram

$$
\begin{aligned}
a_{n+1} & =a_{n}^{2}, \\
b_{n+1} & =b_{n}^{2}+a_{n}^{2} b_{n}, \\
c_{n+1} & =c_{n}^{2}, \\
d_{n+1} & =d_{n}^{2}+g_{n}^{2} b_{n}+c_{n}^{2} d_{n}, \\
e_{n+1} & =e_{n}^{2}, \\
f_{n+1} & =f_{n}^{2}+e_{n}^{2} f_{n}+h_{n}^{2} d_{n}+i_{n}^{2} b_{n}, \\
g_{n+1} & =a_{n} g_{n}\left(b_{n}+c_{n}\right), \\
h_{n+1} & =h_{n}\left(a_{n} e_{n}+b_{n} c_{n}\right), \\
i_{n+1} & =i_{n}\left(c_{n} e_{n}+d_{n} a_{n}\right)+g_{n}^{2} h_{n},
\end{aligned}
$$

with initial conditions

$$
\begin{align*}
& a_{0}=1, \quad b_{0}=1, \quad c_{0}=y, \quad d_{0}=y^{2}, \quad e_{0}=y^{2}, \quad f_{0}=y^{4} \\
& g_{0}=y \sigma, \quad h_{0}=y^{2} \sigma^{2}, \quad i_{0}=y^{3} \sigma^{2} \tag{10}
\end{align*}
$$

Boltzmann weights y, σ enter only through initial conditions! In this model

$$
\begin{array}{r}
y_{12}=y_{23}=y, y_{31}=1 \\
\sigma_{i j}=\sigma, \sigma_{123}=1
\end{array}
$$

Iterate numerically and look for the leading (diverging) term

$$
r_{1}=\frac{d_{n+1}^{2-\text { bound }}}{b_{n+1}^{2}} \quad r_{2}=\frac{f_{n+1}^{3 \text {-bound }}}{b_{n+1}^{3}} \quad r_{3}=\frac{f_{n+1}^{3 \text {-bound }}}{b_{n+1} d_{n+1}}
$$

3 chain phase diagram

The mixed $2+1$ phase

3 chain phase diagram

Same analysis with
w = Boltzmann weight for 3-chain interaction
$\sigma=1$
2 chain transition line
w = 1/y to get same results as before with $\sigma=1$

Conclusions and perspectives

- real space RG is exact in fractal lattices \rightarrow recursion eq. for restricted partition functions; Boltzmann weights enter through initial conditions
- phase diagram for 3 polymer chains within Poland-Scheraga model (base complementarity in DNA)
- 3 chains are bound when two are not: connection with Efimov physics (quantum mapping?) (but one should treat identical quantum particles for a full analogy)
- possibility for a mixed $2+1$ phase stabilized by strand exchange: only in theory?

