

Università degli Studi di Padova

Renormalisation group techniques for polymers on fractal lattices

ANTONIO TROVATO

University of Padova - Department of Physics and Astronomy "G. Galilei"

INFN, Padova Section

Bridging scales: At the crossroads among renormalisation group, multi-scale modelling, and deep learning.

ECT, Trento, April 15-19 2024

Acknowledgments

- Somendra Bhattacharjee Ashoka University (Delhi)
- Jaya Maji IOP Bhubaneswar
- Flavio Seno UNIPD DFA (Physics and Astronomy Dept.)

Maji et al New J Phys 2010 Maji et al Phys Rev E 2014 Maji et al J Stat Mech 2017

Polymer critical behaviour

Number of polymers with N monomers: $c_N \sim \mu^N N^{\gamma-1}$ as N >> 1

 μ = connective constant \rightarrow ln μ is the (asymptotic) entropy per monomer

y = entropic exponent

Average end-to-end distance (or gyration radius)

```
R_N \sim N^{\nu} as N >> 1; \nu = thermal exponent
```

Random Walk: $v = \frac{1}{2}$; y = 1

(Random non interacting) Self-Avoiding Walk (d=3): v = 0.5880(15); $\gamma = 1.157(3)$ SWOLLEN PHASE

SAW and O(n) spin models

Critical behaviour in the infinite N limit \leftrightarrow critical fugacity $z_c = 1/\mu$ $Z(z) = \sum_{N=1}^{\infty} c_N z^N \sim (z - z_c)^{-\gamma}$

High T-expansion of Ising model:

 $Z_{I} = Tr \prod_{\langle i,j \rangle} (1 + v s_{i} s_{j}); v = \tanh(J / \kappa_{B} T)$

Only graphs G consisting of L loops survive! With n-component spins (gas of loops):

$$Z_n = \sum_G v^N n^L$$
 (honeycomb lattice)

In the $n \rightarrow 0$ limit: free energy per spin component = grand partition function for SA Polygons!

$$\lim_{n \to 0} \lim_{N_s \to \infty} \frac{1}{n N_s} \ln Z_n = \sum_{SAP} v^N$$

 N_s = number of spins/lattice sites v = SAP/SAW fugacity

With the same trick: spin-spin correlation function \leftrightarrow SAW $G_n(k,l) = \langle \vec{s_k} \cdot \vec{s_l} \rangle; \lim_{n \to 0} \lim_{N_s \to \infty} \frac{G_n(k,l)}{n N_s} = \sum_{SAW \ k \to l} v^N$

SAW on a fractal lattice

[Figure from Maji et al. NJP 2010]

Recursive construction of the Sierpinski gasket: $d = ln3/ln2 \sim 1.58$

Write recursion equations for restricted partition functions (Dhar 1984)

With initial conditions:

$$A_0 = \sqrt{v}; B_0 = v; C_0 = 0; D_0 = 0$$

RG technique on fractal lattice

 $B_0 = v \rightarrow$ recursion equation for fugacity

$$v' = v^2 + v^3$$

Repulsive fixed point at

$$v_c = (\sqrt{5} - 1)/2$$

[Figure from Vanderzande "Lattice models of polymers]

Thermal exponent
$$\left[\frac{dv'}{dv}\right]_{v=v_c} = 2^{1/v} = 2v_c + 3v_c^2$$

v = 0.7986...

A minimal model for DNA melting: Poland-Scheraga

Homogeneous ideal polymer chains interacting with each other only at the same monomer index (complementary base pairing)

always a bound state / no melting transition in d \leq 2 when $\sigma = 1$ ($\sigma < 1$ or crossing contraint necessary ford transition at finite T in d \leq 2)

QUANTUM MAPPING monomer index \leftrightarrow imaginary time interaction between two quantum particles with a δ - potential

[Figure from www.peliti.org]

DNA melting and bubbles in directed walk models

[Figure from Maji et al. NJP 2010]

Triplex DNA

A third strand may attach to an already formed B-DNA duplex via Hoogsteen or reverse-Hoogsteen hydrogen bonds

Sequence specific binding but strict base pair complementarity may be lost (always 2 Hoogsteen h-bonds per base)

Suggested/hyphotesized to regulate (inhibit) replication, transcription, protein binding to DNA

Potential therapeutic applications \rightarrow delivery mechanism (Dalla Pozza et al. Chem Rev 2022)

Efimov effect (from nuclear physics to cold atoms)

3 identical bosons can form a bound state when 2 cannot! \rightarrow universal effect

a = scattering length

"Efimov DNA": triplex DNA stable when duplex is not?

[Figure from Ferlaino and Grimm, Physics 2010]

No Efimov Dna with no bubbles

Y-fork model \rightarrow no bubbles (σ = 0)

Directed walks in D=1+1 (NO crossing): 2 possible steps per base

 $y = \exp(\epsilon / T); c = \epsilon_{13}$

2 chain transition at $\epsilon = T \ln 2$

same ϵ for all chains \rightarrow trivial stabilization of 3-bound state

 $c = 0 \rightarrow$ interactions between chains 1,3 only mediated by interactions with chain 2: Is Efimov DNA possible with bubbles?

Efimov Dna with bubbles from scaling argument

RG recursions to map out the phase diagram

 $a_{n+1} = a_n^2$ $b_{n+1} = b_n^2 + a_n^2 b_n$ $c_{n+1} = c_n^2$ $d_{n+1} = d_n^2 + g_n^2 b_n + c_n^2 d_n,$ $e_{n+1} = e_n^2$, $f_{n+1} = f_n^2 + e_n^2 f_n + h_n^2 d_n + i_n^2 b_n$ $g_{n+1} = a_n g_n (b_n + c_n),$ $h_{n+1} = h_n(a_n e_n + b_n c_n),$ $i_{n+1} = i_n(c_n e_n + d_n a_n) + g_n^2 h_n,$

recursive equations for restricted 3 chain partition functions (crossing not allowed and z=1)

with initial conditions

$$a_0 = 1, \quad b_0 = 1, \quad c_0 = y, \quad d_0 = y^2, \quad e_0 = y^2, \quad f_0 = y^4,$$

 $g_0 = y\sigma, \quad h_0 = y^2\sigma^2, \quad i_0 = y^3\sigma^2.$ (10)

Boltzmann weights y, σ enter only through initial conditions!In this model $y_{12} = y_{23} = y, y_{31} = 1$ and crossing not allowed $\sigma_{ij} = \sigma, \sigma_{123} = 1$

Iterate numerically and look for the leading (diverging) term

3 chain phase diagram

[Figures from Maji et al. PRE 2014]

1.3

3 chain phase diagram

Conclusions and perspectives

- real space RG is exact in fractal lattices \rightarrow recursion eq. for restricted partition functions; Boltzmann weights enter through initial conditions

- phase diagram for 3 polymer chains within Poland-Scheraga model (base complementarity in DNA)

- 3 chains are bound when two are not: connection with Efimov physics (quantum mapping?) (but one should treat identical quantum particles for a full analogy)

- possibility for a mixed 2+1 phase stabilized by strand exchange: only in theory?