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Motivation
● Hydrogen is promising energy vector but needs effective storage media. 

● Bulk magnesium hydride (MgH2) presents considerable gravimetric hydrogen storage capacity 
(7.6 wt%), being also abundant and relatively cheap.

● However, at ambient pressure, the desorption temperature is too high 553 K (280°C) for pratical 
applications.

● The desorption temperature can be modified by nanosizing of the material.

● We need to perform simulations to better understand the experimental data.



  

State of the art
● The effect of nanosizing have been assessed by different computational methods such as DMC, 

CCSD(T) and DFT. DFT captures the main trends of the desorption energy.

● Amorphous NPs containing only a few atoms are destabilized, intermediate size NPS are 
stabilized and for large amorphous particles the desorption energy tends to a value lower than 
that of the bulk.  

● In any case none of the studies in the literature included the anharmonic properties of the 
material.



  

Objectives
● Compute the Hydrogen desorption temperature of small MgnH2n nanoparticles including 

anharmonic effects at DFT level

We use Stochastic Self Consistent Harmonic Approximation (SSCHA) based on DFT calculations of potential 
surface to determine the free energy of Mg and MgnH2n NPs.

                       Even if stochastic we got many thousands of single points calculations!



  

● Exploit the DFT energy and forces to train a NN to be used with SSCHA for large NPs

As the SSCHA method needs many thousands of evaluations of forces and energies we employed the 
SchNet–package, a continuous filter layers convolutional Neural-Network (NN) package, integrating the latter 
in the Atomic Simulation Environment (ASE) together with the python implementation of the SSCHA code. 

                     NN could be anyway trained on more accurate calculations of potential surface



  

Computational Methods
● DFT within Quantum Espresso  

P. Giannozzi et al. J.Phys.: Condens.Matter 21, 395502 (2009)

● SSCHA method within python-sscha    

Ion Errea, Matteo Calandra, and Francesco Mauri   Phys. Rev. B 89, 064302 (2014)

Lorenzo Monacelli et al.  J. Phys.: Condens. Matter 33 363001 (2021)

● NN model of potential energy surface with SchNetPack 

K.T. Schütt et al. J. Chem. Theory Comput. , 15 (1): 448-455 (2019)

● NN forces end energies calculation with The Atomic Simulation Environment ASE

Ask Hjorth Larsen et al.J. Phys.: Condens. Matter Vol. 29 273002 (2017)



  

● Compute the Hydrogen desorption temperature of MgH2 nanoparticles 

The hydrogen desorption temperature Td in MgH2 can be determined at constant pressure p = 1 
bar: 

where ∆H and ∆S are the changes in enthalpy and entropy of the reaction at constant 
temperature and volume, respectively. From the knowledge of ∆G = ∆H −T∆S, we computed the 
entropy S and the enthalpy H.

                     We only need G of H2 (done exactly), Mgn  and MgnH2n NPs at different 
temperatures!



  

● Stochastic Self Consistent Harmonic Approximation (SSCHA) to compute the free Energy

The Helmholtz free energy (HFE) of a solid, which includes the contributions arising from the 
static lattice zero-temperature internal energy, from the thermal electronic excitation and from 
the ionic vibrations, reads

where                          is the total Hamiltonian of the system written as the sum of kinetic energy 
operator (K) and of the many-body adiabatic potential energy (V) within the Born–Oppenheimer 
approximation.  

                                  is the density matrix, where β = 1/(kBT), kB is the Boltzmann constant, and 
T the temperature.                 is obtained for using trial density matrix        .



  

The Gibbs–Bogoliubov variational principle states that for an arbitrary harmonic trial Hamiltonian                 
                      ,  the Harmonic free energy fulfills the following inequality 

where R identifies the ion positions. In the SSCHA method the minimization of                is performed by a 
stochastic evaluation of the free energy and its gradient by varying the free parameters of an Hamiltonian 
characterised by an harmonic trial potential     .         and              have the analytic forms.

During the minimization, the atomic coordinates are allowed to relax in order to obtain the finite 
temperature atomic positions.

We need a starting dynamical matrix. Then we need the calculation of the energies and the forces for 
each of the configurations of the population, that are composed by a few thousands of configuration each.

               



  

SSCHA proceeds through a series of repeated evaluation steps, the first being the generation of the stochastic 
population and the calculation of the energy and forces for each element of the population, the second being 
the minimization of the free energy using a reweighting procedure. The resampling is performed when the 
stochastic population due to the reweighting procedure is no more representative of the starting one.

Starting population
2000 of configurations 

Minimization with 
reweighting 

New population
Larger populations 
(10000 – 20000) = 
smaller error



  

The calculations have been performed at 300 K, 500 K, and 600 K. 

The free energy calculation has been extended in the range ±20 K around each 
calculated point, using the stochastic population generated at the reference temperature 
by taking advantage of the reweighing procedure.
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● Ab initio calculation of the Born-Oppenheimer potential surfaces and forces

We performed the evaluation of the potential energy, forces and dynamical matrix by means of DFT calculations, 
using: Quantum ESPRESSO code. PBE exchange-correlation functional. The van der Waals dispersion Grimme 
D3 semiempirical correction. Cubic cell of 2 nm side for all structures. Makov–Payne correction for the cutoff 
interactions among periodic replicas. Number of calculations 2000-20000 for different populations.



  

● The integration of machine learning, SchNet

● From one side we have a lot of calculations done for the small NPs, from the other side we want to study 
lager NPs.

● We have employed SchNet, which is a continuous filter layers convolutional Neural-Network (NN) package

● These layers can model unevenly spaced data.

● Rotationally invariant energy predictions and a smooth, differentiable potential energy surface. 

● It has remarkable flexibility and scalability is another distinguishing factor.



  

● Training and test of the SchNet model 

● The training set contains 2 ×105 Mgn and MgnH2n cluster configurations (3 ≤ n ≤ 10) with their relevant DFT forces and 
total energies. We used the data obtained from the population at 300 K and 500 K.

● The validation set contains 4x103 configurations. 

● Our NN is generated with 5 interaction blocks, 128 features and, for the Gaussian expansion, we used a range of 0.25  
nm to cover all the interatomic distances occurring in the data. 

● For the loss function we have also added the root-mean-square (RMS) error of the forces to the DFT total energies, 
with a trade-off between energy and forces loss. The convergence is obtained when the loss function is less than 10 −4. 

● A Mgn cluster test set of 2 ×105 configurations (4 ×105 for MgnH2n) was used for the determination of the Maximum 
Absolute Error (MAE) between ML predictions and the configurations of the test set.



  

● Test of the SchNet model 

                                      Magnesium                                                                                  Magnesium Hydride

        
We used the data obtained from the population at 300 and 500 K. The Maximum Absolute Error (MAE) mean values for the Mgn 
clusters are rather small, that is 0.004 eV for the energy and 0.005 eV/A for the forces at the peak maximum energies and forces 
are, respectively, 0.02 eV and 0.02 eV/A around the maximum of the peak distributions.

The trained SchNet best model was embedded in the ASE calculator, which provides the total energies and forces to be used in 
the SSCHA minimization procedure. 



  

Results

● Td is an increasing function of the cluster size for the considered NPs

● The effect of anharmonicity on Td is up to 40 K 

● The inclusion of the rotational entropy leads to almost negligible corrections



  

● Extension to larger NPs

● To start the structural optimization of MgnH2n NPs (n ≥ 10), we used the geometries of TinO2n NPs (n = 15, 20, 
43)



  

● The difference between the results obtained using the SchNet + SSCHA (S[chnet]SCHA framework) and 
the DFT + SSCHA one are very small, including the desorption temperature.



  

We were able to perform the calculation of the free energy on NPs up to Mg20H40 atoms on a laptop. The 
calculation takes a few hours. 



  

Discussion

● The general trend of our results is similar to that found in the literature for small nanoparticles up to Mg10H20 .

● The anharmonic contribution is not negligible as it can be up to 40K.

● The data of energies and forces can be used for the training of NN, as the number of ab initio calculations is 
feasible but large for large systems.

● SchNet is suitable for the description of these materials and the coupling with SSCHA has been implemented 
using the ASE package.

 



  

Outlooks

● The use of the S[chnet]SCHA framework could allow to study the anharmonic properties and the 
hydrogen desorption of very large nanoparticles with ab initio accuracy.

● The SchNet model could be even trained on more accurate quantum chemical methods.

● The desorption temperature calculation could be done recursively from an initial guess.

● The data mining for the exploration of the low energy configurations could be again based on SchNet 
models.

 



  

Thanks for the attention
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