Fixed point actions from lattice gauge equivariant convolutional neural networks

Andreas Ipp

Institute for Theoretical Physics, TU Wien, Austria

Workshop "Bridging scales: At the crossroads among renormalisation group, multi-scale modelling, and deep learning"

ECT* Trento, April 19, 2024

Der Wissenschaftsfonds.

Overview

Glasma simulations

Al, Müller, Phys. Lett. B 771 (2017) 74 Gelfand, Al, Müller, Phys. Rev. D94 (2016) no.1, 014020

Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003

Learning fixed-point actions

Holland, AI, Müller, Wenger arXiv:2401.06481

David Müller

Matteo Favoni Daniel Schuh

Open source: https://gitlab.com/openpixi/lge-cnn

Kieran Holland (U. Pacific) Urs Wenger (U. Bern)

Motivation

QCD phase diagram

Sun (surface): $6000^{\circ}C \approx 0.5 \text{ eV}$

Sun (core): 15 million °C \approx 1.3 keV

Quark-Gluon Plasma: 1.7×10^{12} °C ≈ 150 MeV

Quark-gluon plasma

- Existed in the early universe
- Produced in heavy ion collisions

Stages of a heavy-ion collision

Freeze-out ($\tau \approx 15 \text{ fm/}c$):

interactions stop

Hadronic gas ($\tau \approx 10 - 15$ fm/c): hadrons (kinetic transport theory)

Hadronization ($\tau \approx 10$ fm/c): confinement transition \rightarrow hadron formation

QGP ($\tau \approx 1 - 10$ fm/c): quarks and gluons (relativistic viscous hydrodynamics)

Glasma ($\tau \approx 0 - 1$ fm/*c*): quasi-classical fields (classical field equations)

Collision event

Initial state: Lorentz-contracted nuclei (color glass condensate)

Colored particle-in-cell method

Generalization of the particle-in-cell method from plasma physics for strong interactions.

[A. Dumitru, Y. Nara, M. Strickland: PRD75:025016 (2007)]

Based on real-time lattice gauge theory in a classical regime.

AI, D. Müller, Phys. Lett. B 771 (2017) 74

Dispersion-free propagation

Simulations of the collision process

Computational challenges

Simulating small part of nuclei at RHIC energies:

 γ -factor: 100 Lattice: 2048 × 192² cells Gauge group: SU(2) Color sheets: 1 Simulation box: (6 fm)³

- \rightarrow **25 GB** simulation data
- → 192 core hours on Vienna Scientific Cluster (VSC-3)

Simulating realistic off-central full size nuclei at LHC energies:

 γ -factor: 2500 Lattice: (25×20480) × 1920² cells Gauge group: SU(3) Color sheets: 100 Simulation box: (60 fm)³

- \rightarrow **25 PB** simulation data
- → 5 million core years on VSC-3 (2020: 150 years on VSC-3; but only 130 TB RAM available) (2023: 55 years on VSC-5; 355 TB RAM available)

Lattice gauge symmetry

Symmetries on the lattice

Translational symmetry

 → Convolutional neural networks (CNNs)

Bulusu, Favoni, Al, Müller, Schuh, Phys. Rev. D 104 (2021) 074504

Rotation, mirror symmetry → Group equivariant CNNs (G-CNNs)

Lattice gauge symmetry

 → Lattice gauge equivariant CNNs (L-CNNs)

Cohen, Welling, ICML 2016

Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003

Yang-Mills action vs. Wilson action

Yang-Mills action	Continuum formulation	Wilson action	Discrete formulation
$S_G[A] = \frac{1}{2g^2} \int d^4x \mathrm{tr} [F_{\mu\nu}(x)F_{\mu\nu}(x$	x)]	$S_W[U] = \frac{2}{g^2} \sum_{x \in \Lambda} \sum_{\mu < \nu} \operatorname{Tr}$	$[\mathbb{1} - U_{x,\mu\nu}]$
Field strength tensor		Plaquette	Wilson (1974)
$F_{\mu\nu}(x) = -i[D_{\mu}(x), D_{\nu}(x)]$ $= \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x) +$	$-\mathrm{i}[A_{\mu}(x), A_{\nu}(x)]$	$U_{x,\mu\nu} = U_{x,\mu}U_{x+\mu,\nu}U_{x+\mu,\mu}U_{x+\mu}U_{x+\mu,\mu}U_{x+\mu}U_{x+\mu,\mu}U_{x+\mu}U_{x+\mu}U_{x+\mu}U_$	$\overset{\dagger}{}_{x+\nu,\mu}U^{\dagger}_{x,\nu}=$
Covariant derivative SU(3)) gauge fields	Link variable	
$D_{\mu}(x) = \partial_{\mu} + i A_{\mu}(x) \qquad \qquad A_{\mu}(x)$	$(x) = \sum_{k=1}^{8} A_{\mu}^{(i)}(x) T_{i}$	$U_{\mu}(n) = \exp\left(\mathrm{i}aA_{\mu}(n)\right)$	n))
Gauge transformation	$\overline{i=1}$	Gauge transformation	
$A_{\mu}(x) \to A'_{\mu}(x) = \Omega(x)A_{\mu}(x)\Omega(x)$	$(x)^{\dagger} + \mathrm{i} \left(\partial_{\mu} \Omega(x) \right) \Omega(x)^{\dagger}$	$U_{\mu}(n) \rightarrow U'_{\mu}(n) = \Omega$	$Q(n) U_{\mu}(n) \Omega(n+\hat{\mu})^{\dagger}$
Taylor expansion in small lattice spacing	reproduces continuum action	$n + \hat{\nu} \qquad U_{\mu}(n)$	$(\hat{\nu}) = \frac{n + \hat{\mu} + \hat{\nu}}{1 + \hat{\nu}}$
$U_{\mu\nu}(n) = \exp\left(\mathrm{i}a^2 F_{\mu\nu}(n) + \mathcal{O}(a^3)\right)$))		
$S_G[U] = \frac{2}{g^2} \sum_{n \in \Lambda} \sum_{\mu < \nu} \operatorname{Re} \operatorname{tr} \left[\mathbb{1} - U_{\mu\nu} \right]$	$(n)] = \frac{a^4}{2 g^2} \sum_{n \in \Lambda} \sum_{\mu,\nu} \operatorname{tr}[F_{\mu\nu}(r)] = \frac{a^4}{2 g^2} \sum_{\mu,\nu$	$[n)^2] + \mathcal{O}(a^2)$	$ \begin{array}{c} $
Fixed point actions from L-CNNs	Andreas Ipp	n I $U_{\mu}(r)$	$n) n + \mu 13$

Wilson loops

Wilson action

$$S_W[U] = \frac{2}{g^2} \sum_{x \in \Lambda} \sum_{\mu < \nu} \operatorname{Tr} \left[\mathbb{1} - U_{x,\mu\nu} \right]$$

Plaquette

$$U_{x,\mu\nu} = U_{x,\mu}U_{x+\mu,\nu}U_{x+\nu,\mu}^{\dagger}U_{x,\nu}^{\dagger} =$$

Symanzik improved clover action

from: Gattringer, Lang (2010)

Fixed point actions from L-CNNs

from: Alexandrou et al., Eur.Phys.J.C 80 (2020) 5, 424

L-CNN data

Combine lattice links *U* and locally transforming objects *W*

tuple $(\mathcal{U}, \mathcal{W})$

 $\mathcal{U} = \{U_{x,\mu}\} \text{ SU}(N_c) \text{ matrices} \\ \mathcal{W} = \{W_{x,i}\} \text{ with } W_{x,i} \in \mathbb{C}^{N_c \times N_c}$

from: Gattringer, Lang (2010)

Gauge transformation

 $T_{\Omega}U_{x,\mu} = \Omega_x U_{x,\mu} \Omega_{x+\mu}^{\dagger}$ $T_{\Omega}W_{x,i} = \Omega_x W_{x,i} \Omega_x^{\dagger}$

Gauge equivariant (gauge covariant) function

$$f(T_{\Omega}\mathcal{U}, T_{\Omega}\mathcal{W}) = T'_{\Omega}f(\mathcal{U}, \mathcal{W})$$

Gauge invariant function

$$f(T_{\Omega}\mathcal{U}, T_{\Omega}\mathcal{W}) = f(\mathcal{U}, \mathcal{W})$$

Lattice gauge equivariant layers

Convolution (L-Conv)

Convolution wish shared weights and proper parallel transport along coordinate axes

$$W'_{\mathbf{x},i} = \sum_{j,\mu,k} (\mathcal{U}, \mathcal{W}) \rightarrow (\mathcal{U}, \mathcal{W}')$$
$$W'_{\mathbf{x},i} = \sum_{j,\mu,k} \omega_{i,j,\mu,k} U_{\mathbf{x},k\cdot\mu} W_{\mathbf{x}+k\cdot\mu,j} U_{\mathbf{x},k\cdot\mu}^{\dagger}$$

Fixed point actions from L-CNNs

Trace layer

Multiply W at each lattice point $(\mathcal{U}, \mathcal{W}) \times (\mathcal{U}, \mathcal{W}') \rightarrow (\mathcal{U}, \mathcal{W}'')$ $W''_{\mathbf{x},i} = \sum_{j,k} \alpha_{ijk} W_{\mathbf{x},j} W'_{\mathbf{x},k}$ Generate gauge invariant output

 $w_{\mathbf{x},i} = \operatorname{Tr} W_{\mathbf{x},i} \in \mathbb{C}$

Generic L-CNN

gauge inv. output

Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003

* parallel transport only along coordinate axes

L-Bilin:

* bilinear layer, product of locally transforming objects

L-Act:

* activation functions multiply W objects by scalar, gauge-invariant functions

L-Exp:

* update link variables using exponential map

Trace:

* calculate gauge invariant trace

Plag:

* generate all possible plaquettes

Polv:

* generate all possible Polyakov loops

Fixed point actions from L-CNNs

L-CNNs generate Wilson loops

Number of traced Wilson loops covered by L-CNN architectures of various sizes in 1+1 D

Length	Max	$W^{(1 \times 1)}$	W^{0}	(1×2)		$W^{(2)}$	$\times 2)$	
		\mathbf{S}	\mathbf{S}	Μ	\mathbf{L}	\mathbf{S}	Μ	L
0	1	1	1	1	1	1	1	1
2	0	0	0	0	0	0	0	0
4	2	2	2	2	2	2	2	2
6	4		4	4	4	4	4	4
8	28		4	4	4	22	22	22
10	152			8	8	48	76	76
12	1,010				8	92	204	220
14	6,772					120	412	532
16	$47,\!646$					100	712	1,080
18	343,168					136	928	1,896
20	$2,\!529,\!890$					32	1,056	$2,\!620$
22	$18,\!982,\!172$					64	768	3,152
≥ 24							800	7,210
Total		3	11	19	27	621	4,985	16,725
Max.Len		4	8	10	12	22	28	34

Architectures differ in number of layers, kernel size, and number of channels.

Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003

Sketch of proof for arbitrary Wilson loops

Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003

- (a) An arbitrary contractible Wilson loop of *n* tiles ...
- (b) ... is composed (L-Bilin) of a Wilson loop of (*n*-1) tiles ...
- (c) ... and a parallel-transported (L-Conv) plaquette (Plaq).

Non-contractible loops (like Polyakov loops) have to be added (Poly).

Numerical results

Regression task to learn value of rectangular Wilson loops:

$$W_{x,\mu\nu}^{(m \times n)} = \operatorname{Re}\operatorname{Tr}\left[U_{x,\mu\nu}^{(m \times n)}
ight]$$

Lattice gauge equivariant CNN (L-CNNs, green) can learn the relation, while traditional convolutional neural networks (CNNs, black) struggle to find the solution.

Training on 8×8 , testing from 8×8 up to 64×64

Compared best from: 100 L-CNN models ($10 - 10^4$ trainable parameters, up to 4 L-Conv+L-Bilin)

2840 CNN models ($100 - 10^5$ trainable parameters up to 6 layers, 512 channels, 4 activation functions)

Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003

Adversarial attacks

Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003

Fixed point action

Quantum field theory on a lattice

Partition function for $SU(N_c)$ gauge theory

Expectation values of observables can be calculated as

$$\langle \mathcal{O}_{\xi}(\beta) \rangle = \frac{1}{Z} \int \mathcal{D}U \exp\{-\beta A[U]\} \mathcal{O}_{\xi}[U]$$

for a characteristic length scale ξ

Renormalization group transformation

Introduce a (real space) renormalization group transformation (RGT) $\exp \left\{-\beta' A'[V]\right\} = \int \mathscr{D}U \exp \left\{-\beta (A[U] + T[U, V])\right\}$ Blocking kernel
The effective action $\beta' A'[V]$ is described

The fixed point is the saddle point in the classical limit $\beta \rightarrow \infty$, which can be found by a minimization condition.

P. Hasenfratz, F. Niedermayer, Nucl.Phys.B 414 (1994) 785

Fixed point actions from L-CNNs

by infinitely many couplings $\{c'_{\alpha}\}$

Blocking kernel

Choice of blocking kernel determines how couplings are modified across scales.

Renormalization group transformation and Fixed point action

Fixed point action using older parametrizations

Niedermayer, Rüfenacht, Wenger, Nucl.Phys.B 597 (2001) 413, hep-lat/0007007

fit to
$$V(r) = V_0 - \frac{\alpha}{r} + \sigma r$$

Fixed point actions from L-CNNs

Machine learning the fixed point action

To obtain the training data for supervised machine learning, first generate ensembles of coarse configurations *V.*

For a given coarse configuration V, the fixed point action values are determined by minimizing configurations U, U', ...

$$A^{\mathsf{FP}}[V] = \min_{\{U\}} \{A^{\mathsf{FP}}[U] + T[U, V]\} = \min_{\{U', U\}} \{A^{\mathsf{FP}}[U'] + T[U', U] + T[U, V]\}$$

Use additional information for training obtained from derivatives of the fixed point action:

$$\frac{\delta A^{\mathsf{FP}}[V]}{\delta V^a_{x,\mu}} = \frac{\delta T[U,V]}{\delta V^a_{x,\mu}} = -\kappa \operatorname{\mathsf{Re}} \operatorname{\mathsf{Tr}}(it^a V_{x,\mu} Q^{\dagger}_{x,\mu}) \qquad \qquad Q^{\dagger}_{x,\mu} = Q^{\dagger}_{x,\mu}[U]$$

yields D [link directions] x (N^2 - 1) [colors] x L^{D} [lattice sites] data per configuration.

Fixed point action using L-CNNs

Parametrize action model in particular way:

$$\mathcal{A}^{\text{L-CNN}}[V] = \sum_{x} \mathcal{A}_{x}^{\text{pre}}[V] \sum_{n=0}^{\infty} b^{(n)} (N_{x}[V] - N_{x}[\mathbb{1}])^{n}$$
Prefactor controls continuum behavior L-CNN

Loss function combines action values and its derivatives $\mathcal{L} = w_1 \mathcal{L}_1 + w_2 \mathcal{L}_2$

$$\mathcal{L}_1 = \frac{1}{L^4 N_{\text{cfg}}} \sum_{i=1}^{N_{\text{cfg}}} |\mathcal{A}^{\text{FP}}[V_i] - \mathcal{A}^{\text{L-CNN}}[V_i]|,$$
$$\mathcal{L}_2 = \frac{1}{32L^4 N_{\text{cfg}}} \sum_{i=1}^{N_{\text{cfg}}} \sum_{x,\mu} \text{Tr} \left[(D_{x,\mu}^{\text{FP}}[V_i] - D_{x,\mu}^{\text{L-CNN}}[V_i])^2 \right]$$

Technical remark: derivatives of L-CNNs are obtained through backpropagation

Fixed point actions from L-CNNs

Scan through various architectures

Train 130 models of various sizes for 4⁴ lattice, SU(3) gauge group, and $\beta_{wil} \in [5, 10]$.

Fixed point actions from L-CNNs

Learning the fixed point action with L-CNNs

Best model: L-CNN with 3 layers with 12, 24, 24 channels and kernel size 2, 2, 1. L-CNN superior to older parametrizations of FP action.

Holland, AI, Müller, Wenger arXiv:2401.06481

Fixed point actions from L-CNNs

Properties of the learned FP action

Holland, AI, Müller, Wenger arXiv:2401.06481

Summary

- improved gauge actions may enable simulations at coarser lattice spacing
- fixed point actions have no lattice artifacts at the classical level (if the object studied can be resolved), and may have suppressed lattice artifacts at the quantum level.
- L-CNNs achieve higher accuracy than previous hand-crafted parametrizations
- Outlook: apply learned FP action to Monte Carlo simulations.

Open source: https://gitlab.com/openpixi/lge-cnn

Backup

Continuous formulation of L-CNNs

Define a continuous version of a gauge equivariant convolution:

$$[\psi * \mathcal{W}]^{a}(\mathbf{x}) = \sum_{b} \int_{\mathbb{R}^{D}} \mathrm{d}\mathbf{y}^{D} \, \psi^{ab}(\mathbf{y} - \mathbf{x}) U_{\mathbf{x} \to \mathbf{y}} W^{b}(\mathbf{y}) U_{\mathbf{x} \to \mathbf{y}}^{\dagger}$$

with kernel components $\,\psi^{\mathsf{ab}}:\mathbb{R}^D\to\mathbb{R}\,$

and parallel transporter
$$U_{\mathbf{x} \to \mathbf{y}} = \mathcal{P} \exp \left\{ i \int_{0}^{1} \mathrm{d}s \frac{\mathrm{d}x^{\nu}(s)}{\mathrm{d}s} A_{\nu}(x(s)) \right\}$$

that map $\mathcal{W} = (\mathcal{W}^1, \dots, \mathcal{W}^m)$ objects to new objects

in a gauge equivariant manner:

$$[\psi * T_{\Omega} \mathcal{W}]^{a}(\mathbf{x}) = T_{\Omega}[\psi * \mathcal{W}]^{a}(\mathbf{x})$$

Similarly define continuous bilinear layer, trace layer, ...

Discretize this to obtain previous formulation.

Compatible with G-CNNs.

Generalizable to vectors and tensors.

Aronsson, Müller, Schuh, arxiv:2303.11448

Translational symmetry

Comparison of architecture types

For fair comparison, best architectures for each type have been obtained by an Optuna optimization (scanning through various kernel sizes, number of layers, number of channels, ...)

Best architectures are retrained 10 times and evaluated on the validation set.

Test regression tasks on observables of a scalar field model in 2 dimensions:

Bulusu, Favoni, Al, Müller, Schuh, Phys. Rev. D 104 (2021) 074504