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Mitochondria

3J. Dudek, Frontiers in Cell and Developmental Biology 5 (2017) 
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J. Dudek Frontiers in Cell and Developmental Biology 5 90 (2017) 
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• Produce	approx.	64	kg	of	ATP	per	day	

• Also	involved	in	biogenesis	and	
metabolic	cycles
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Outer and inner membranes
• Inner	membrane	(IM)	par``ons	inter	membrane	space	from	matrix	and	
contains	membrane-bound	ATP	synthase	proteins	

• IM	contains	~20%	of	cardiolipin	(CL)	—	an	unusual	phospholipid	with	4	
acyl	chains	that	is	uniquely	found	in	energy-genera`ng	membranes

J. Dudek Frontiers in Cell and Developmental Biology 5 90 (2017) 
G. Paradies, V. Paradies, F.M. Ruggiero, and G. Petrosillo Cells 8 728 (2019)

cardiolipin (CL)

palmitoyloleoyl phosphatidylglycerol (POPG)4

Cardiolipin-linked pathologies
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palmitoyloleoyl phosphatidylglycerol (POPG)4

- Inner membrane contains ~20% of cardiolipin (CL) 
- Abnormalities in CL composition of IM are linked to Barth syndrome, 

Tangier disease, heart failure, and neurodegeneration

Paradies, Paradies, Ruggiero, Petrosillo, Cells 8 (2019)

CL-linked pathologies
• CL	is	hallmark	of	energy	transducing	membranes	and	is	implicated	in	
mitochondrial	metabolism,	regula`on,	and	apoptosis	

• Abnormali`es	in	CL	composi`on	of	IM	are	linked	are	linked	to	Barth	
syndrome,	Tangier	disease,	heart	failure,	and	neurodegenera`on

G. Paradies, V. Paradies, F.M. Ruggiero, and G. Petrosillo Cells 8 728 (2019)            F. Gonzalvez ... P.X. Petit Biochimica et Biophysica Acta 1832 1194–1206 (2013) 
https://www.barthsyndrome.org/barthsyndrome/familyresources/toolsforschool/resources.html

cwere observed in DB037 cells treatedwith anti-Fas antibody (Fig. 5). By
contrast, no disruption of OPA-1 oligomers or cell death was observed in
lymphoblasts frompatients (Fig. 5). These observations suggest that BTHS
cellsmaymaintain OPA-1 complexes, possibly accounting for their capac-
ity to resist apoptosis. The stability of the OPA-1 complexes did not seem
to be affected by the changes in CL structure or the amount of CL observed
in the mutant (Fig. 2).

3.6. Bioenergetic state of BTHS and control lymphoblasts

We investigated whether the decrease in the amount of RC super-
complexes affected mitochondrial function and oxidative phosphoryla-
tion (OXPHOS), by investigating ATP synthesis and mitochondrial
respiration. No difference in ATP synthesis or mitochondrial respiration
was found betweenmutant andWT cells when the rateswere expressed
permgof protein (Table 2). Citrate synthase, an enzymeof themitochon-
drial matrix used as amarker of themitochondrial content, was found to
be significantly increased in BTHS cells (Table 2). These results suggest
that BTHS cells had a greater mitochondrial content than control cells.
HPLC determinations on cell lysates showed that ATP/ADP ratio was
slightly lower in BTHS cells than in control cells (Fig. 6A). [AMP] is pro-
portional to the square of [ADP] divided by [ATP] (assuming close equi-
librium with adenylate kinase in most cells). Thus, if the absolute ATP
and ADP (Fig. 6A) levels are taken into account, together with [AMP],
[AMP] is clearly higher in BTHS cells than in control cells (Fig. 6B). This

finding is of particular importance, because an increase in AMP/ATP
ratio (from 0.078 in control to 0.103 in patient-derived cells) might
lead to the activation of AMP kinase, a major regulator of mitochondrial
biogenesis via the PGC1-alpha pathway, accounting for the observed in-
crease in mitochondrial mass. Furthermore, the NADH content of BTHS
lymphoblasts was higher than that of controls (Fig. 6C), suggesting that
this compound is not readily oxidized by the RC in the mitochondria of
these cells, most likely because of the deficit in complex I.

3.7. Flow cytometry analysis of the early events of apoptosis in control
and BTHS lymphoblasts

We investigated LETD cleavage in control cells and cells frompatients,
in the presence (αCD95) and absence of apoptotic stimuli. The triggering
of apoptosis in control lymphoblasts led to the activation of caspase-8 and
cleavage of the LETD substrate (Fig. 7A). No such cleavage activitywas ob-
served when the same experiment was carried out with lymphoblasts
from patients (Fig. 7A).

The collapse of mitochondrial membrane potential (ΔΨm) is one of
the first changes to occur in apoptosis [6,7]. We therefore investigated
the temporal relationship between the loss of ΔΨm and NAD(P)H oxi-
dation. Control cells and BTHS cells were labeled with TMRM, to obtain
information about ΔΨm changes (Fig. 7B). The treatment of cells with
αCD95 for 24 h decreased ΔΨm in a significant proportion (65%) of
control cells (Fig. 7B). Apoptosis was almost totally inhibited in BTHS
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Fig. 2. Analysis of cardiolipin (CL) and monolysocardiolipin (MLCL) from control (DB037/DB015) and BTHS lymphoblasts (DB105-3/DB105-2).
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NAO fluorescent stain
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Fernandez, Ceccarelli, Muscatello, Analytical Biochemistry 328 (2004);  
Rodriguez et al., Mitochondrion 8 (2008); Horvath, Daum, Progress in Lipid Research 52 (2013);  
Zielonka et al., Chemical Reviews 117 (2017); Jacobson et al., Journal of Neurochemistry 82 (2002)

NAO fluorescent stain

M.I.G. Fernandez, D. Ceccarelli, and U. Muscatello Analytical Biochemistry 328 174–180 (2004)      M.E. Rodriguez ... N.E. Oleinick Mitochondrion 8 3 237–246 (2008) 
S.E. Horvath and G. Daum Progress in Lipid Research, 52 4 590-614 (2013)      J. Zielonka ... B. Kalyanaraman, Chemical Reviews 117 (15) 10043-10120 (2017) 
https://www.medchemexpress.com/Acridine_Orange_10-Nonyl_Bromide.html   J. Jacobson, M,R. Duchenàand, and S.J.R. Heales Journal of Neurochemistry 82 224–233 (2002)

• 10-N-nonyl	acridine	orange	(NAO)	is	a	high-affinity	probe	that	is	30x	more	
specific	for	CL	than	for	other	ca`onic	phospholipids		

• Used	as	a	stain	for	fluorescent	visualiza`on	and	quan`fica`on	of	IM	CL	

• Physicochemical	basis	for	specificity	is	unknown
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- 10-N-nonyl acridine orange (NAO) is a high-
affinity probe  

- Used as a stain for fluorescent visualization 
and quantification of IM CL 

- Physicochemical basis for specificity is 
unknown  

Can we: 
1. Discover small organic CL dyes with selectivity 

superior to NAO? 
2. Extract molecular design rules for mechanism of 

action?

Dirk Schneider 
(JGU Mainz)

Data-driven molecular discovery
• Integrate	high-throughput	virtual	screening,	data-driven	learning,	and	
experimental	tes`ng	to: 
 

(1)	Discover	organic	molecule	CL	dyes	with	superior	selec`vity	to	NAO 
(2)	Extract	molecular	design	rules	for	mechanism	of	ac`on

Prof. Tristan Bereau 
(U. Amsterdam)

Bernadette Mohr 
(U. Amsterdam)

Kirill Shmilovich 
(U. Chicago)

Prof. Dirk Schneider 
(J.G. Universität Mainz)

Isabel Kleinwächter 
(J.G. Universität Mainz)

Coarse Graining

Figure: CG and AA representation distribution4

4R. Menichetti, K. H. Kanekal, K. Kremer, et al., “In silico screening of drug-membrane thermodynamics reveals linear relations between bulk
partitioning and the potential of mean force,” The Journal of chemical physics, vol. 147, no. 12, p. 125 101, 2017.
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 J. Jacobson, M,R. Duchenàand, and S.J.R. Heales Journal of Neurochemistry 82 224–233 (2002)      L. David, A. Thakkar, R. Mercado, and O. Engkvist J Cheminform 12 56 (2020) 7



Molecular search space
• Consider	all	small	organic	molecules	containing	up	to	400	Da	

• Transform	into	coarse	grained	5-bead	MARTINI	representa`ons	for	CGMD	

• Search	space	>1011	all-atom	molecules	⇒	124,327	MARTINI	CG	molecules

D.H. de Jong, G. Singh, W.F.D. Bennett, C. Arnarez, T.A. Wassenaar, L.V. Schäfer, X. Periole, D.P. Tieleman, S.J. Marrink J. Chem. Th. Comp, 9:687–697 (2013) 
K.H. Kanekal and T. Bereau The Journal of Chemical Physics 151 16 106 (2019)      https://github.com/chemplexity/molecules

Coarse Graining

Figure: CG and AA representation distribution4

4R. Menichetti, K. H. Kanekal, K. Kremer, et al., “In silico screening of drug-membrane thermodynamics reveals linear relations between bulk
partitioning and the potential of mean force,” The Journal of chemical physics, vol. 147, no. 12, p. 125 101, 2017.
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MARTINI
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Approaches
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1. Fit experimental data to machine-learning model
Little to no data available

Precision vs model simplicity?
3.  Run coarse-grained molecular dynamics simulations

Unbearably slow convergence
2.  Run all-atom molecular dynamics simulations1. Coarse-graining too simplistic? 

2. Generate ML training data from computer 
simulations

Challenges



HP protein models
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Nassar, Dignon, Razban, Dill, J Mol Biol, 20 (2021)

- Recast protein-folding problem as a 
lattice polymer model 

- Discovery of funnel-shaped energy 
landscape theory 

- Map 20 amino acids into binary code: 
Hydrophobic and Polar beads

See work from Dill, MacCallum, Wolynes, Chan, Shakhnovich, and many others

Top-down model with bead types: 
Martini does something similar 
(with more chemical fidelity)



Coarse-graining molecules
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Short primer on coarse-graining

9
Bradley and Radhakrishnan, Polymers 5 (2013)

…
Bead types: chemical fragments

- Top-down: from 
phenomenological 
information / large-scale physics

- Bottom-up: from 
microscopic information (e.g., 
atomistic simulations)

Noid, J Chem Phys 139 (2013)



Compounding challenges in chemical-space exploration

10
In both cases: Importance-sampling problems!

Free-energy landscape

Voth, CRC Press (2008); Noid, J Chem Phys 139 (2013)

Self 
assembly

Von Lilienfeld et al., Nat Rev Chem 4 (2020)

Chemical compound space

Molecular discovery

“Compositional landscape”



Mullard,  
Nature, 549 (2017)

1060105010401030102010101

Chemical space is large

11

Dobson, Nature, 432 (2004)
~1060 compounds

Drug-like chemical space

number of carbon 
atoms in the universe



Sampling efficiency of coarse-grained models
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Conformational space Chemical space

…
18 bead types: chemical fragmentsdue to CG mapping
due to finite set of bead types

All CG models
Transferable CG 

models

Work from Voth, Noid, Shell, Kremer, van der Vegt, and others Kanekal, Bereau, J Chem Phys 151 (2019)

5 bead 
types

12 bead 
types 
(Martini)

16 bead 
types Hydrophobicity

Dobson, Nature, 432 (2004)
~1060 compounds~105 CG 

molecules
Drug-like small-molecule chemical space



High-throughput coarse-graining scheme
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Hy
dr
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ity

Permeability surface across 
chemical space along two 

molecular descriptors

Potential of mean force of 
neutral and charged species

+

-

+

Insertion of neutral and 
charged compounds across 

the membrane

Reduction of chemical space 
according to size and 

hydrophobicity

Menichetti, Kanekal, Bereau, ACS Cent. Sci.  5 (2019) Kiran 
Kanekal

• Coarse-graining prior to high-throughput 
simulations 

• Fewer simulations 
• suggests low-dimensional representation

Strategy

Roberto 
Menichetti



CGMD selectivity measurements
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- Compute transfer free energies into CL and 
POPG membranes using alchemical 
transformations 

- Objective function to maximize CL vs POPG 
selectivity:

ΔΔGPOPG→CL = ΔGCL − ΔGPOPG
Thermodynamic 
preference for 
desired CL 
membrane

Thermodynamic 
preference for most 
chemically similar 
competitor

Maximize the gap

Figure 2: Free energy calculation workflow, with numbers showing the three steps as in figure 7.
Interactions are turned off in state 0 (white solute) and fully on in state 1 (yellow solute). Horizontal
arrows represent absolute solvation free energies, vertical arrows represent partitioning free energies
between different environments. Environments are (a) bulk water and ions, (b) CL bilayer, a water
phase and ions, (c) PG bilayer, water phase and ions, and (d) bulk octane. In (b) and (c), a section of
the water phase was removed from the images for aesthetic purposes.
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Outer and inner membranes
• Inner	membrane	(IM)	par``ons	inter	membrane	space	from	matrix	and	
contains	membrane-bound	ATP	synthase	proteins	

• IM	contains	~20%	of	cardiolipin	(CL)	—	an	unusual	phospholipid	with	4	
acyl	chains	that	is	uniquely	found	in	energy-genera`ng	membranes

J. Dudek Frontiers in Cell and Developmental Biology 5 90 (2017) 
G. Paradies, V. Paradies, F.M. Ruggiero, and G. Petrosillo Cells 8 728 (2019)

cardiolipin (CL)

palmitoyloleoyl phosphatidylglycerol (POPG)4



High-throughput virtual screening
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High-throughput virtual screening (HTVS)

Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules
Rafael Goḿez-Bombarelli,†,# Jennifer N. Wei,‡,# David Duvenaud,¶,# Jose ́Miguel Hernańdez-Lobato,§,#

Benjamín Sańchez-Lengeling,‡ Dennis Sheberla,‡ Jorge Aguilera-Iparraguirre,† Timothy D. Hirzel,†

Ryan P. Adams,∇,∥ and Alań Aspuru-Guzik*,‡,⊥

†Kyulux North America Inc., 10 Post Office Square, Suite 800, Boston, Massachusetts 02109, United States
‡Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
¶Department of Computer Science, University of Toronto, 6 King’s College Road, Toronto, Ontario M5S 3H5, Canada
§Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
∇Google Brain, Mountain View, California, United States
∥Princeton University, Princeton, New Jersey, United States
⊥Biologically-Inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5S 1M1,
Canada

*S Supporting Information

ABSTRACT: We report a method to convert discrete
representations of molecules to and from a multidimensional
continuous representation. This model allows us to generate new
molecules for efficient exploration and optimization through
open-ended spaces of chemical compounds. A deep neural
network was trained on hundreds of thousands of existing
chemical structures to construct three coupled functions: an
encoder, a decoder, and a predictor. The encoder converts the
discrete representation of a molecule into a real-valued
continuous vector, and the decoder converts these continuous
vectors back to discrete molecular representations. The predictor
estimates chemical properties from the latent continuous vector
representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical
structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical
structures, or interpolating between molecules. Continuous representations also allow the use of powerful gradient-based
optimization to efficiently guide the search for optimized functional compounds. We demonstrate our method in the domain of
drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.

■ INTRODUCTION

The goal of drug and material design is to identify novel
molecules that have certain desirable properties. We view this
as an optimization problem, in which we are searching for the
molecules that maximize our quantitative desiderata. However,
optimization in molecular space is extremely challenging,
because the search space is large, discrete, and unstructured.
Making and testing new compounds are costly and time-
consuming, and the number of potential candidates is
overwhelming. Only about 108 substances have ever been
synthesized,1 whereas the range of potential drug-like molecules
is estimated to be between 1023 and 1060.2

Virtual screening can be used to speed up this search.3−6

Virtual libraries containing thousands to hundreds of millions
of candidates can be assayed with first-principles simulations or
statistical predictions based on learned proxy models, and only

the most promising leads are selected and tested experimen-
tally.
However, even when accurate simulations are available,7

computational molecular design is limited by the search
strategy used to explore chemical space. Current methods
either exhaustively search through a fixed library,8,9 or use
discrete local search methods such as genetic algorithms10−15 or
similar discrete interpolation techniques.16−18 Although these
techniques have led to useful new molecules, these approaches
still face large challenges. Fixed libraries are monolithic, costly
to fully explore, and require hand-crafted rules to avoid
impractical chemistries. The genetic generation of compounds
requires manual specification of heuristics for mutation and
crossover rules. Discrete optimization methods have difficulty

Received: December 2, 2017
Published: January 12, 2018

Research Article

Cite This: ACS Cent. Sci. 2018, 4, 268−276

© 2018 American Chemical Society 268 DOI: 10.1021/acscentsci.7b00572
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Unsupervised	deep	representa`onal	
learning	of	molecular	space	using	
regularized	autoencoders	(RAE)

1

Supervised	learning	of	sequence—
selec`vity	rela`onship	using	
Gaussian	process	regression	(GPR)

2

Estimate fitness

Learn featurization

3 AcWve	learning	to	op`mally	deploy	
coarse	grained	molecular	dynamics	
(CGMD)	to	explore	molecular	space

Explore sequence space
R. Gomez-Bombnarelli ... A. Aspuru-Guzik ACS Central Science  4 268-276  (2018)   C.E. Rasmussen "Gaussian processes in machine learning" Springer, 2003   https://github.com/chemplexity/molecules 13
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†Kyulux North America Inc., 10 Post Office Square, Suite 800, Boston, Massachusetts 02109, United States
‡Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
¶Department of Computer Science, University of Toronto, 6 King’s College Road, Toronto, Ontario M5S 3H5, Canada
§Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
∇Google Brain, Mountain View, California, United States
∥Princeton University, Princeton, New Jersey, United States
⊥Biologically-Inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5S 1M1,
Canada

*S Supporting Information

ABSTRACT: We report a method to convert discrete
representations of molecules to and from a multidimensional
continuous representation. This model allows us to generate new
molecules for efficient exploration and optimization through
open-ended spaces of chemical compounds. A deep neural
network was trained on hundreds of thousands of existing
chemical structures to construct three coupled functions: an
encoder, a decoder, and a predictor. The encoder converts the
discrete representation of a molecule into a real-valued
continuous vector, and the decoder converts these continuous
vectors back to discrete molecular representations. The predictor
estimates chemical properties from the latent continuous vector
representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical
structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical
structures, or interpolating between molecules. Continuous representations also allow the use of powerful gradient-based
optimization to efficiently guide the search for optimized functional compounds. We demonstrate our method in the domain of
drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.

■ INTRODUCTION

The goal of drug and material design is to identify novel
molecules that have certain desirable properties. We view this
as an optimization problem, in which we are searching for the
molecules that maximize our quantitative desiderata. However,
optimization in molecular space is extremely challenging,
because the search space is large, discrete, and unstructured.
Making and testing new compounds are costly and time-
consuming, and the number of potential candidates is
overwhelming. Only about 108 substances have ever been
synthesized,1 whereas the range of potential drug-like molecules
is estimated to be between 1023 and 1060.2

Virtual screening can be used to speed up this search.3−6

Virtual libraries containing thousands to hundreds of millions
of candidates can be assayed with first-principles simulations or
statistical predictions based on learned proxy models, and only

the most promising leads are selected and tested experimen-
tally.
However, even when accurate simulations are available,7

computational molecular design is limited by the search
strategy used to explore chemical space. Current methods
either exhaustively search through a fixed library,8,9 or use
discrete local search methods such as genetic algorithms10−15 or
similar discrete interpolation techniques.16−18 Although these
techniques have led to useful new molecules, these approaches
still face large challenges. Fixed libraries are monolithic, costly
to fully explore, and require hand-crafted rules to avoid
impractical chemistries. The genetic generation of compounds
requires manual specification of heuristics for mutation and
crossover rules. Discrete optimization methods have difficulty

Received: December 2, 2017
Published: January 12, 2018

Research Article

Cite This: ACS Cent. Sci. 2018, 4, 268−276

© 2018 American Chemical Society 268 DOI: 10.1021/acscentsci.7b00572
ACS Cent. Sci. 2018, 4, 268−276

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

Unsupervised	deep	representa`onal	
learning	of	molecular	space	using	
regularized	autoencoders	(RAE)

1

Supervised	learning	of	sequence—
selec`vity	rela`onship	using	
Gaussian	process	regression	(GPR)

2

Estimate fitness

Learn featurization

3 AcWve	learning	to	op`mally	deploy	
coarse	grained	molecular	dynamics	
(CGMD)	to	explore	molecular	space

Explore sequence space
R. Gomez-Bombnarelli ... A. Aspuru-Guzik ACS Central Science  4 268-276  (2018)   C.E. Rasmussen "Gaussian processes in machine learning" Springer, 2003   https://github.com/chemplexity/molecules 13

Learn featurization Estimate fitness Explore chemical space

Gomez-Bombarelli et al., ACS Central Science 4 (2018) 
Rasmussen "Gaussian processes in machine learning" Springer, 2003

Unsupervised deep 
representation learning of 
chemical space using regularized 
autoencoders

Supervised learning of sequence-
selectivity relationship using 
Gaussian process regression

Active learning (Bayesian 
optimization) to optimally deploy 
coarse-grained molecular 
dynamics to explore chemical 
space

Andrew Ferguson

Data-driven molecular discovery
• Integrate	high-throughput	virtual	screening,	data-driven	learning,	and	
experimental	tes`ng	to: 
 

(1)	Discover	organic	molecule	CL	dyes	with	superior	selec`vity	to	NAO 
(2)	Extract	molecular	design	rules	for	mechanism	of	ac`on
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Prof. Dirk Schneider 
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Coarse Graining

Figure: CG and AA representation distribution4

4R. Menichetti, K. H. Kanekal, K. Kremer, et al., “In silico screening of drug-membrane thermodynamics reveals linear relations between bulk
partitioning and the potential of mean force,” The Journal of chemical physics, vol. 147, no. 12, p. 125 101, 2017.
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2.2 Coarse-grained molecular design space

The molecular design space for our computational screening is
formed from organic molecules with molecular weights less
than or equal to 500 Da. We impose this upper weight
threshold in order to promote high mobility and diffusion into
and through membranes.7 No atom types are excluded from
our design space. The number of molecules satisfying these
criteria is !1060,26 motivating the use of approximations and
simplications to efficiently screen this subset of chemical
space. To this end, we employ the coarse-grained (CG) Martini
2 molecular model, that both greatly reduces the cost of our
molecular simulations and signicantly reduces the size of
chemical compound space by grouping molecules into
a smaller number of CG representations.27–29 The Martini
model was parameterized against thermodynamic data to
generate 14 neutral and four charged CG bead types (14 + 4
bead-type model) representing most physicochemical interac-
tions relevant in biomolecular settings. This building-block
approach allows the rapid generation of new representations
without requiring individual reparameterization and provides
a good balance between chemical accuracy and computational
efficiency. The Martini CG force eld has been widely used in
the study of membrane organization and dynamics,30–33 drug-
membrane permeability,34–38 and membrane–protein

interactions.39–43 More recently it has been shown that even
coarser models, going as low as ve bead types, represent the
underlying physical properties comparably well while facili-
tating more thorough coverage of chemical compound space
by reducing the combinatorial complexity.25 We created a 5 + 1
bead-type CG model through extending the ve bead-type 5 +
0 reduced Martini model25 by one charged bead-type to fully
represent the candidate small molecule probes. The additional
charged bead-type represents single positive or negative
charges (Q0"). We offset this increase in complexity by
removing the two non-polar bead types representing only
hydrogen bond donor or acceptor properties (T3d, T3a), as the
reduced Martini model already contains a nonpolar hydrogen
bond donor- and acceptor bead-type (T3) that represents both
interaction types simultaneously. The complete 5 + 1 model
comprises the set of ve neutral bead types ordered by
descending polarity and one charged bead type {T1, T2, T3, T4,
T5, Q0"} as illustrated in Fig. S1 in the ESI.† This reduced
model allowed us to explore the chemical compound space
more efficiently compared to the 14 + 4 interaction type
scheme applied in Martini.27 The combinatorial candidate
space of compounds less than 500 Da was dened by con-
structing all plausible molecular graphs containing ve or
fewer 5 + 1 beads, resulting in 124 327 candidate compounds.

Fig. 2 Active learning cycle for the automated discovery of small (#500 Da) molecules with high CL selectivity. (a) Coarse-grained molecular
dynamics (CGMD) simulations are performed to calculate the partitioning free energy of a molecule into PG and CLmembranes used to evaluate
the CL selectivity DDG. (b) Deep representational learning using a regularized autoencoder (RAE) is used to construct a fixed-size latent space
embedding of the discrete molecular design space encompassing all coarse-grained molecular candidates. Gaussian process regression (GPR)
surrogate models are fit using all accumulated simulation data to predict the CL selectivity DDG of all untested compounds within the design
space. (c) These surrogate model predictions are then interfaced with a Bayesian optimization platform to select the next most promising
compounds for computational simulation. This process iteratively continues until multiple consecutive active learning rounds fail to identify new
top-performing compounds. (d) Using our accumulated simulation data we extract design rules linking the inclusion/omission of chemical
functional groups to the degree of CL selectivity DDG by building of interpretable linear models using graph representational learning. (e) The
design rules are used to select candidate compounds that are subjected to fluorescence anisotropy measurements as well as CG free energy
calculations to validate our findings. Structures in this panel are drawn with ChemSketch,24 the icons were obtained from https://Flaticon.com.

4500 | Chem. Sci., 2022, 13, 4498–4511 © 2022 The Author(s). Published by the Royal Society of Chemistry
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1. Run free-energy 
calculations for active 
learning cycle n

2. Attach new free energies 
to augment training of 
GPR inside the latent 
space

3. Bayesian optimization 
selects next compounds 
to simulate

4. Repeat until convergence

Mohr et al., Chemical Science (2022); “2022 Pick of the Week”
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- Performed 7 rounds of screening with 60 candidates per round
- Discover optimal candidate after 4 rounds with  kcal/mol 

- Sampled only 0.42% of molecular candidate space 
- 720 GPU-days of computation 
- 180x selectivity increase over NAO

ΔΔG = − 3.27

(k
ca
l/m
ol
)

Screening results
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• Performed	7	rounds	of	screening	with	60	candidates	per	round	

• Discover	op`mal	candidate	aoer	4	rounds	with	 	=	-3.27	kcal/mol 
	 —	sampled	only	0.19%	of	molecular	candidate	space 
	 —	720	GPU-days	of	computa`on  
	 —	54×	selecWvity	increase	over	NAO

ΔΔG

(k
ca
l/m
ol
)

ΔΔGNAO = (−0.86 ± 0.08) kcal/mol

posed of up to five CG beads. Our search space consisting of
124,327 unique CG compounds encompasses the broad atomistic
space of all small molecules with molecular weight up to ⇠500
Da. By operating within this reduced candidate space we can
achieve superior search efficiencies without sacrificing chemical
space coverage. We observe convergence after only seven active
learning rounds and simulating a mere 0.42% (520 compounds,
100 seeded and 60 per round) of our compound space.

We observe the active learning search to effectively navigate
our learned chemical space embedding to identify profitable re-
gions of latent space densely populated with high-performing
candidates by balancing both exploration, selecting compounds
with high predicted uncertainty, and exploitation, selecting com-
pounds with high predicted performance. The majority 439 of
520 simulated compounds throughout the seven active learn-
ing rounds were observed to spontaneously insert into phospho-
lipid membranes, we therefore call these compounds interfacial.
The remaining 81 compounds which failed to effectively insert
from the bulk water environment into PG-based membranes are
termed non-interfacial and are terminated early within the simu-
lation workflow as a resource-saving strategy. Fig. 3 illustrates the
distribution of simulated interfacial candidates after each round,
while Fig. 4 illustrates the location within the latent space of
all simulated candidates after each round. The distribution of
sampled DDG values of interfacial compounds steadily decreases
round-by-round due to the ability of our active learning pro-
tocol to identify regions of latent space containing more high-
performing molecular candidates. Select rounds tend to perform
more exploration, such as round six and seven, reflected by more
variance in the sampled DDG distribution, broader latent space
sampling, and a higher proportion of selected non-interfacial
compounds. Other rounds such as round four and five tend to be
more exploitative reflected by more localized latent space sam-
pling corresponding to a more favorable DDG distribution with
fewer non-interfacial candidates selected. While these trends in
sampling help provide some intuition for the active learning pro-
cess, each round inherently balances exploration and exploita-
tion to select the next most effective compounds to simulate in
order to simultaneously discover high-performing candidates and
diversely sample the design space.

We elected to terminate sampling by tracking the performance
of the best observed candidates after each round. Throughout the
first four rounds we observe an approximately linear decrease in
the overall best observed DDG, with the following three rounds
yielding no overall improvement but nonetheless identifying rela-
tively high performing candidates (Fig. 5). The stagnant improve-
ment over the last three rounds is an indication to terminate sam-
pling due to additional rounds being unlikely to identify a new
overall best molecule. Throughout our active learning process we
observed a 22.2% improvement in the best calculated DDG from
round zero to round four, and a 184% improvement upon the cal-
culated DDG of a CG NAO molecule (DDG ⇡ 1.153) generated us-
ing the bead type—functional group relation described in sec. 3.7.
We can approximately quantify the savings afforded by our active
learning process in discovering our best performing molecule by
comparing against a baseline of naive random sampling. A sim-

Fig. 3 Distribution of calculated transfer free energy DDG for CG com-
pounds simulated after each active learning round. Each active learning
cycle involves the selection of 60 candidates via Bayesian optimization
that are then passed to a battery of molecular simulations and free energy
calculations. Compounds that spontaneously insert into the membrane
bi-layers are endowed with DDG values measuring their preferential parti-
tioning into CL-based membranes. Later rounds of active learning drive
the distribution of sampled DDG values toward the target smaller DDG
values. Iteratively collected data is used to fit increasingly more accurate
property landscapes to the latent space molecular representations using a
GPR surrogate model that in turn drives the selection of new compounds
to simulate and selected using Bayesian optimization.

Fig. 4 Simulated compounds latent space embeddings visualized in a
2D PCA projection colored by their calculated DDG. Dark blue points
represent compounds that fail to spontaneously insert into the membrane
bi-layer and are deemed not interfacial and hence are terminated early
within the workflow without finalizing the DDG calculation. Model pre-
dictions become more accurate round-by-round as data is accumulated
enabling the acquisition function to progressively better localize sampling
in regions of latent space dense in high-performing compounds.

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–13 | 7
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missing non-intuitive but high-performing candidates, and this
baseline random search comparison nonetheless effectively
highlights the value of our data-driven approach for guided
molecular discovery.

4.2 Data-driven discovery of chemical design rules

Having completed seven rounds of active learning and calcu-
lating DDG values for N ¼ 439 compounds, we proceed to use
graph representational learning to discover design rules corre-
lating the presence/absence of chemical motifs to CL selectivity.
In the interest of simplicity and interpretability, we adopt
a simple linear model given in eqn (2) for predicting the
calculated transfer free energy of a molecule via a featurization
based on its decomposition into topologically unique structures
with 1–5 CG beads. This model is trained using the LASSO
regression algorithm to promote sparsity where select elements
from the learned model weights are set precisely to zero qk ¼ 0,
and the nonzero weights kqkk > 0 correspond to a small number
of the most generalizable features retained by the model. Based

on the linear structure of eqn (2) the sign of learned nonzero
weights qk indicates whether the corresponding subgraph
motifs contribute to more favorable DDG values leading to
better CL selectivity if qk < 0, or unfavorable DDG values if qk > 0.
Furthermore, as the subgraph representations Fn,k in eqn (2) are
normalized and therefore unitless, the coefficient weights qk
carry the same units as DDG of kcal mol"1. The magnitude of
these coefficient weights qk can therefore be interpreted as the
extent in kcal mol"1 that the representation of specic
subgraphmotifs improve, if qk < 0, or degrade, if qk > 0, upon the
average CL selectivity DDGmean. Analyzing the prevailing struc-
tural features and characteristics contained in the largest
magnitude model weights serves as a data-driven approach for
unveiling critical determinants of CL selectivity.

In Fig. 5 we present a rank ordering of the largest magnitude
nonzero model weights qk partitioned by the sign of the weight,
sgn(qk). These largest magnitude weights can be interpreted as
corresponding to CGmotifs with the highest predictive capacity
and therefore the most inuential for determining CL selec-
tivity. We note that while this analysis pertains to the CG space
our active learning search is performed in, the following Sec. 4.3

Fig. 4 (a) Best sampled DDG for each active learning round alongside
the cumulatively best sampled molecule in each round. The top axis
denotes the number of compounds simulated after each round and in
parentheses as a percent of the 124 327 molecule design space. Errors
represent uncertainly in the measured DDG for the associated
compound. The best candidate was selected after round four, with the
final three rounds failing to identify any new better performing
candidates. (b) The 12 best coarse-grained molecules identified over
all seven active learning rounds sorted by increasing DDG. Large
negative values of DDG correspond to high thermodynamic selectivity
for CL over PG membranes.

Fig. 5 Rank-ordering of learned coefficient weights qk corresponding
to CG motifs for predicting measured DDG. Each compound n is
featurized by calculating the normalized frequency of all k topologi-
cally unique subgraphs consisting of 1–5 CG beads, denoted Fn,k.
Using this featurization we perform LASSO regression to predict the
calculated DDG obtained from the alchemical free energy calculations

using eqn (2): DDGpredicted
ðnÞ ¼ DDGmean þ

Pk¼1608

k¼1
qkFn;k:We then extract

the associated largest and smallest learned coefficient weights qk from
the reduced feature set retained by the LASSO model. The most
negative coefficient weights correspond to chemical motifs indicative
of small DDG and good CL selectivity, while the most positive weights
correspond to motifs predicative of large DDG and poor CL selectivity.
As the weights qk have units of kcal mol"1 these weights can be
interpreted as the magnitude of the influence of the corresponding
subgraph motif on CL selectivity.

© 2022 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2022, 13, 4498–4511 | 4505
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Top coarse-grained 
compounds

missing non-intuitive but high-performing candidates, and this
baseline random search comparison nonetheless effectively
highlights the value of our data-driven approach for guided
molecular discovery.

4.2 Data-driven discovery of chemical design rules

Having completed seven rounds of active learning and calcu-
lating DDG values for N ¼ 439 compounds, we proceed to use
graph representational learning to discover design rules corre-
lating the presence/absence of chemical motifs to CL selectivity.
In the interest of simplicity and interpretability, we adopt
a simple linear model given in eqn (2) for predicting the
calculated transfer free energy of a molecule via a featurization
based on its decomposition into topologically unique structures
with 1–5 CG beads. This model is trained using the LASSO
regression algorithm to promote sparsity where select elements
from the learned model weights are set precisely to zero qk ¼ 0,
and the nonzero weights kqkk > 0 correspond to a small number
of the most generalizable features retained by the model. Based

on the linear structure of eqn (2) the sign of learned nonzero
weights qk indicates whether the corresponding subgraph
motifs contribute to more favorable DDG values leading to
better CL selectivity if qk < 0, or unfavorable DDG values if qk > 0.
Furthermore, as the subgraph representations Fn,k in eqn (2) are
normalized and therefore unitless, the coefficient weights qk
carry the same units as DDG of kcal mol"1. The magnitude of
these coefficient weights qk can therefore be interpreted as the
extent in kcal mol"1 that the representation of specic
subgraphmotifs improve, if qk < 0, or degrade, if qk > 0, upon the
average CL selectivity DDGmean. Analyzing the prevailing struc-
tural features and characteristics contained in the largest
magnitude model weights serves as a data-driven approach for
unveiling critical determinants of CL selectivity.

In Fig. 5 we present a rank ordering of the largest magnitude
nonzero model weights qk partitioned by the sign of the weight,
sgn(qk). These largest magnitude weights can be interpreted as
corresponding to CGmotifs with the highest predictive capacity
and therefore the most inuential for determining CL selec-
tivity. We note that while this analysis pertains to the CG space
our active learning search is performed in, the following Sec. 4.3

Fig. 4 (a) Best sampled DDG for each active learning round alongside
the cumulatively best sampled molecule in each round. The top axis
denotes the number of compounds simulated after each round and in
parentheses as a percent of the 124 327 molecule design space. Errors
represent uncertainly in the measured DDG for the associated
compound. The best candidate was selected after round four, with the
final three rounds failing to identify any new better performing
candidates. (b) The 12 best coarse-grained molecules identified over
all seven active learning rounds sorted by increasing DDG. Large
negative values of DDG correspond to high thermodynamic selectivity
for CL over PG membranes.

Fig. 5 Rank-ordering of learned coefficient weights qk corresponding
to CG motifs for predicting measured DDG. Each compound n is
featurized by calculating the normalized frequency of all k topologi-
cally unique subgraphs consisting of 1–5 CG beads, denoted Fn,k.
Using this featurization we perform LASSO regression to predict the
calculated DDG obtained from the alchemical free energy calculations

using eqn (2): DDGpredicted
ðnÞ ¼ DDGmean þ

Pk¼1608

k¼1
qkFn;k:We then extract

the associated largest and smallest learned coefficient weights qk from
the reduced feature set retained by the LASSO model. The most
negative coefficient weights correspond to chemical motifs indicative
of small DDG and good CL selectivity, while the most positive weights
correspond to motifs predicative of large DDG and poor CL selectivity.
As the weights qk have units of kcal mol"1 these weights can be
interpreted as the magnitude of the influence of the corresponding
subgraph motif on CL selectivity.

© 2022 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2022, 13, 4498–4511 | 4505
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LASSO regression to identify 
best/worst subgraphs

Mohr et al., Chemical Science (2022); “2022 Pick of the Week”

In silico discovery of design rules
- Positive charge (lipid’s polar 

head)
- (coarse-grained) Hbonds
- Hydrophobicity (stabilizes 

in membrane)

Design rules
2.2 Coarse-grained molecular design space

The molecular design space for our computational screening is
formed from organic molecules with molecular weights less
than or equal to 500 Da. We impose this upper weight
threshold in order to promote high mobility and diffusion into
and through membranes.7 No atom types are excluded from
our design space. The number of molecules satisfying these
criteria is !1060,26 motivating the use of approximations and
simplications to efficiently screen this subset of chemical
space. To this end, we employ the coarse-grained (CG) Martini
2 molecular model, that both greatly reduces the cost of our
molecular simulations and signicantly reduces the size of
chemical compound space by grouping molecules into
a smaller number of CG representations.27–29 The Martini
model was parameterized against thermodynamic data to
generate 14 neutral and four charged CG bead types (14 + 4
bead-type model) representing most physicochemical interac-
tions relevant in biomolecular settings. This building-block
approach allows the rapid generation of new representations
without requiring individual reparameterization and provides
a good balance between chemical accuracy and computational
efficiency. The Martini CG force eld has been widely used in
the study of membrane organization and dynamics,30–33 drug-
membrane permeability,34–38 and membrane–protein

interactions.39–43 More recently it has been shown that even
coarser models, going as low as ve bead types, represent the
underlying physical properties comparably well while facili-
tating more thorough coverage of chemical compound space
by reducing the combinatorial complexity.25 We created a 5 + 1
bead-type CG model through extending the ve bead-type 5 +
0 reduced Martini model25 by one charged bead-type to fully
represent the candidate small molecule probes. The additional
charged bead-type represents single positive or negative
charges (Q0"). We offset this increase in complexity by
removing the two non-polar bead types representing only
hydrogen bond donor or acceptor properties (T3d, T3a), as the
reduced Martini model already contains a nonpolar hydrogen
bond donor- and acceptor bead-type (T3) that represents both
interaction types simultaneously. The complete 5 + 1 model
comprises the set of ve neutral bead types ordered by
descending polarity and one charged bead type {T1, T2, T3, T4,
T5, Q0"} as illustrated in Fig. S1 in the ESI.† This reduced
model allowed us to explore the chemical compound space
more efficiently compared to the 14 + 4 interaction type
scheme applied in Martini.27 The combinatorial candidate
space of compounds less than 500 Da was dened by con-
structing all plausible molecular graphs containing ve or
fewer 5 + 1 beads, resulting in 124 327 candidate compounds.

Fig. 2 Active learning cycle for the automated discovery of small (#500 Da) molecules with high CL selectivity. (a) Coarse-grained molecular
dynamics (CGMD) simulations are performed to calculate the partitioning free energy of a molecule into PG and CLmembranes used to evaluate
the CL selectivity DDG. (b) Deep representational learning using a regularized autoencoder (RAE) is used to construct a fixed-size latent space
embedding of the discrete molecular design space encompassing all coarse-grained molecular candidates. Gaussian process regression (GPR)
surrogate models are fit using all accumulated simulation data to predict the CL selectivity DDG of all untested compounds within the design
space. (c) These surrogate model predictions are then interfaced with a Bayesian optimization platform to select the next most promising
compounds for computational simulation. This process iteratively continues until multiple consecutive active learning rounds fail to identify new
top-performing compounds. (d) Using our accumulated simulation data we extract design rules linking the inclusion/omission of chemical
functional groups to the degree of CL selectivity DDG by building of interpretable linear models using graph representational learning. (e) The
design rules are used to select candidate compounds that are subjected to fluorescence anisotropy measurements as well as CG free energy
calculations to validate our findings. Structures in this panel are drawn with ChemSketch,24 the icons were obtained from https://Flaticon.com.

4500 | Chem. Sci., 2022, 13, 4498–4511 © 2022 The Author(s). Published by the Royal Society of Chemistry
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missing non-intuitive but high-performing candidates, and this
baseline random search comparison nonetheless effectively
highlights the value of our data-driven approach for guided
molecular discovery.

4.2 Data-driven discovery of chemical design rules

Having completed seven rounds of active learning and calcu-
lating DDG values for N ¼ 439 compounds, we proceed to use
graph representational learning to discover design rules corre-
lating the presence/absence of chemical motifs to CL selectivity.
In the interest of simplicity and interpretability, we adopt
a simple linear model given in eqn (2) for predicting the
calculated transfer free energy of a molecule via a featurization
based on its decomposition into topologically unique structures
with 1–5 CG beads. This model is trained using the LASSO
regression algorithm to promote sparsity where select elements
from the learned model weights are set precisely to zero qk ¼ 0,
and the nonzero weights kqkk > 0 correspond to a small number
of the most generalizable features retained by the model. Based

on the linear structure of eqn (2) the sign of learned nonzero
weights qk indicates whether the corresponding subgraph
motifs contribute to more favorable DDG values leading to
better CL selectivity if qk < 0, or unfavorable DDG values if qk > 0.
Furthermore, as the subgraph representations Fn,k in eqn (2) are
normalized and therefore unitless, the coefficient weights qk
carry the same units as DDG of kcal mol"1. The magnitude of
these coefficient weights qk can therefore be interpreted as the
extent in kcal mol"1 that the representation of specic
subgraphmotifs improve, if qk < 0, or degrade, if qk > 0, upon the
average CL selectivity DDGmean. Analyzing the prevailing struc-
tural features and characteristics contained in the largest
magnitude model weights serves as a data-driven approach for
unveiling critical determinants of CL selectivity.

In Fig. 5 we present a rank ordering of the largest magnitude
nonzero model weights qk partitioned by the sign of the weight,
sgn(qk). These largest magnitude weights can be interpreted as
corresponding to CGmotifs with the highest predictive capacity
and therefore the most inuential for determining CL selec-
tivity. We note that while this analysis pertains to the CG space
our active learning search is performed in, the following Sec. 4.3

Fig. 4 (a) Best sampled DDG for each active learning round alongside
the cumulatively best sampled molecule in each round. The top axis
denotes the number of compounds simulated after each round and in
parentheses as a percent of the 124 327 molecule design space. Errors
represent uncertainly in the measured DDG for the associated
compound. The best candidate was selected after round four, with the
final three rounds failing to identify any new better performing
candidates. (b) The 12 best coarse-grained molecules identified over
all seven active learning rounds sorted by increasing DDG. Large
negative values of DDG correspond to high thermodynamic selectivity
for CL over PG membranes.

Fig. 5 Rank-ordering of learned coefficient weights qk corresponding
to CG motifs for predicting measured DDG. Each compound n is
featurized by calculating the normalized frequency of all k topologi-
cally unique subgraphs consisting of 1–5 CG beads, denoted Fn,k.
Using this featurization we perform LASSO regression to predict the
calculated DDG obtained from the alchemical free energy calculations

using eqn (2): DDGpredicted
ðnÞ ¼ DDGmean þ

Pk¼1608

k¼1
qkFn;k:We then extract

the associated largest and smallest learned coefficient weights qk from
the reduced feature set retained by the LASSO model. The most
negative coefficient weights correspond to chemical motifs indicative
of small DDG and good CL selectivity, while the most positive weights
correspond to motifs predicative of large DDG and poor CL selectivity.
As the weights qk have units of kcal mol"1 these weights can be
interpreted as the magnitude of the influence of the corresponding
subgraph motif on CL selectivity.

© 2022 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2022, 13, 4498–4511 | 4505
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†Kyulux North America Inc., 10 Post Office Square, Suite 800, Boston, Massachusetts 02109, United States
‡Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
¶Department of Computer Science, University of Toronto, 6 King’s College Road, Toronto, Ontario M5S 3H5, Canada
§Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
∇Google Brain, Mountain View, California, United States
∥Princeton University, Princeton, New Jersey, United States
⊥Biologically-Inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5S 1M1,
Canada

*S Supporting Information

ABSTRACT: We report a method to convert discrete
representations of molecules to and from a multidimensional
continuous representation. This model allows us to generate new
molecules for efficient exploration and optimization through
open-ended spaces of chemical compounds. A deep neural
network was trained on hundreds of thousands of existing
chemical structures to construct three coupled functions: an
encoder, a decoder, and a predictor. The encoder converts the
discrete representation of a molecule into a real-valued
continuous vector, and the decoder converts these continuous
vectors back to discrete molecular representations. The predictor
estimates chemical properties from the latent continuous vector
representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical
structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical
structures, or interpolating between molecules. Continuous representations also allow the use of powerful gradient-based
optimization to efficiently guide the search for optimized functional compounds. We demonstrate our method in the domain of
drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.

■ INTRODUCTION

The goal of drug and material design is to identify novel
molecules that have certain desirable properties. We view this
as an optimization problem, in which we are searching for the
molecules that maximize our quantitative desiderata. However,
optimization in molecular space is extremely challenging,
because the search space is large, discrete, and unstructured.
Making and testing new compounds are costly and time-
consuming, and the number of potential candidates is
overwhelming. Only about 108 substances have ever been
synthesized,1 whereas the range of potential drug-like molecules
is estimated to be between 1023 and 1060.2

Virtual screening can be used to speed up this search.3−6

Virtual libraries containing thousands to hundreds of millions
of candidates can be assayed with first-principles simulations or
statistical predictions based on learned proxy models, and only

the most promising leads are selected and tested experimen-
tally.
However, even when accurate simulations are available,7

computational molecular design is limited by the search
strategy used to explore chemical space. Current methods
either exhaustively search through a fixed library,8,9 or use
discrete local search methods such as genetic algorithms10−15 or
similar discrete interpolation techniques.16−18 Although these
techniques have led to useful new molecules, these approaches
still face large challenges. Fixed libraries are monolithic, costly
to fully explore, and require hand-crafted rules to avoid
impractical chemistries. The genetic generation of compounds
requires manual specification of heuristics for mutation and
crossover rules. Discrete optimization methods have difficulty
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Fig. 2 Active learning cycle for the automated discovery of small (<500 Da) molecules with high CL selectivity. Coarse-grained molecular dynamics

(CGMD) simulations are performed to calculate the partitioning free energy of a molecule into PG- and CL-based membranes used to evaluate the

CL selectivity DDG. Deep representational learning using a regularized autoencoder (RAE) is used to construct a fixed-size latent space embedding of

the discrete molecular design space encompassing all coarse-grained molecular candidates. Gaussian process regression (GPR) surrogate models are

fit using all accumulated simulation data to predict the CL selectivity DDG of all untested compounds within the design space. These surrogate model

predictions are then interfaced with a Bayesian optimization platform to select the next most promising compounds for computational simulation. This

process iteratively continues until multiple consecutive active learning rounds fail to identify new top-preforming compounds. Using our accumulated

simulation data we extract design rules linking the inclusion/omission of chemical functional groups to the degree of CL selectivity DDG by building of

interpretable linear models using graph representational learning.

{T 1, T 2, T 3, T 4, T 5, Q0±} illustrated in Fig. S1. This reduced
model allowed us to even further abridge the chemical compound
space compared to the 14+4 interaction type scheme applied in
Martini21. The combinatorial candidate space of compounds less
than 500 Da was defined by constructing all plausible molecular
graphs containing five or fewer 5+1 beads, resulting in 124,327
candidate compounds. This number stands in place of approxi-
mately 109�1011 molecules contained in the same chemical space
in atomistic resolution.

2.3 Coarse-grained molecular dynamics (CGMD) simula-

tions and alchemical free energy calculations

The CGMD calculations aim at computing the relative thermody-
namic affinity of a small molecule candidate for a CL membrane
relative to a PG membrane. We select a PG membrane as the
most chemically similar two-acyl chain phospholipid to CL (Fig. 1
c and d), and therefore the most challenging phospholipid against
which to engineer CL selectivity. We quantify this affinity by com-
puting the transfer free energy DDG for each candidate molecule
from a PG membrane to a CL membrane at the headgroup re-
gions:

DDGPG!CL = DG
CL
W!I �DG

PG
W!I (1)

To reduce the overall computational cost, we adopted a three-step
hierarchy for the free energy calculations. First, we calculate the
insertion free energy of a candidate structure at the interface re-

gion of the PG membrane DG
PG, see Fig. S2 (1). The cumulative

position probabilites over the simulation trajectory are evaluated
to determine if the compound preferentially inserts at the inter-
face region between the bilayer and the water phase (Fig. S7 (1)).
The similarity between PG and CL allowed us to exclude clearly
non-interfacial candidates at this step, since they are highly likely
to behave in the same way in both CL and PG membranes. If a
candidate structure is found to be interfacial in the first step, in
the second step insertion free energies are calculated in bulk wa-
ter (DG

W) and bulk octane (DG
O) environments used as proxys

for the water phase and the membrane midplane, respectively
(Fig. S2 and S7, (2)). The insertion free energies DG

PG, DG
W and

DG
O allow us to calculate the transfer free energies DG

PG
W!I from

the water phase to the interface and DG
PG
M!I from the midplane to

the interface. Negative values for both DG
PG
W!I and DG

PG
O!I signify

a preferential alignment of the candidate compound with the PG
interface. If this second step confirmed the findings of the first,
a compound was processed further in the third and computation-
ally most expensive step of the hierarchy (Fig. S2 and S7, (3)),
the calculation of the insertion free energy at the interface region
of the CL membrane. By comparing the transfer free energies of
the compound from bulk water to the interfaces of both the PG
and CL membranes, respectively, we are able to find candidates
with a high selectivity to CL39. More negative values of the trans-
fer free energy difference DDGPG!CL are indicative of stronger
thermodynamic selectivity for CL relative to PG. We constructed
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missing non-intuitive but high-performing candidates, and this
baseline random search comparison nonetheless effectively
highlights the value of our data-driven approach for guided
molecular discovery.

4.2 Data-driven discovery of chemical design rules

Having completed seven rounds of active learning and calcu-
lating DDG values for N ¼ 439 compounds, we proceed to use
graph representational learning to discover design rules corre-
lating the presence/absence of chemical motifs to CL selectivity.
In the interest of simplicity and interpretability, we adopt
a simple linear model given in eqn (2) for predicting the
calculated transfer free energy of a molecule via a featurization
based on its decomposition into topologically unique structures
with 1–5 CG beads. This model is trained using the LASSO
regression algorithm to promote sparsity where select elements
from the learned model weights are set precisely to zero qk ¼ 0,
and the nonzero weights kqkk > 0 correspond to a small number
of the most generalizable features retained by the model. Based

on the linear structure of eqn (2) the sign of learned nonzero
weights qk indicates whether the corresponding subgraph
motifs contribute to more favorable DDG values leading to
better CL selectivity if qk < 0, or unfavorable DDG values if qk > 0.
Furthermore, as the subgraph representations Fn,k in eqn (2) are
normalized and therefore unitless, the coefficient weights qk
carry the same units as DDG of kcal mol"1. The magnitude of
these coefficient weights qk can therefore be interpreted as the
extent in kcal mol"1 that the representation of specic
subgraphmotifs improve, if qk < 0, or degrade, if qk > 0, upon the
average CL selectivity DDGmean. Analyzing the prevailing struc-
tural features and characteristics contained in the largest
magnitude model weights serves as a data-driven approach for
unveiling critical determinants of CL selectivity.

In Fig. 5 we present a rank ordering of the largest magnitude
nonzero model weights qk partitioned by the sign of the weight,
sgn(qk). These largest magnitude weights can be interpreted as
corresponding to CGmotifs with the highest predictive capacity
and therefore the most inuential for determining CL selec-
tivity. We note that while this analysis pertains to the CG space
our active learning search is performed in, the following Sec. 4.3

Fig. 4 (a) Best sampled DDG for each active learning round alongside
the cumulatively best sampled molecule in each round. The top axis
denotes the number of compounds simulated after each round and in
parentheses as a percent of the 124 327 molecule design space. Errors
represent uncertainly in the measured DDG for the associated
compound. The best candidate was selected after round four, with the
final three rounds failing to identify any new better performing
candidates. (b) The 12 best coarse-grained molecules identified over
all seven active learning rounds sorted by increasing DDG. Large
negative values of DDG correspond to high thermodynamic selectivity
for CL over PG membranes.

Fig. 5 Rank-ordering of learned coefficient weights qk corresponding
to CG motifs for predicting measured DDG. Each compound n is
featurized by calculating the normalized frequency of all k topologi-
cally unique subgraphs consisting of 1–5 CG beads, denoted Fn,k.
Using this featurization we perform LASSO regression to predict the
calculated DDG obtained from the alchemical free energy calculations

using eqn (2): DDGpredicted
ðnÞ ¼ DDGmean þ

Pk¼1608

k¼1
qkFn;k:We then extract

the associated largest and smallest learned coefficient weights qk from
the reduced feature set retained by the LASSO model. The most
negative coefficient weights correspond to chemical motifs indicative
of small DDG and good CL selectivity, while the most positive weights
correspond to motifs predicative of large DDG and poor CL selectivity.
As the weights qk have units of kcal mol"1 these weights can be
interpreted as the magnitude of the influence of the corresponding
subgraph motif on CL selectivity.

© 2022 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2022, 13, 4498–4511 | 4505
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ABSTRACT: We report a method to convert discrete
representations of molecules to and from a multidimensional
continuous representation. This model allows us to generate new
molecules for efficient exploration and optimization through
open-ended spaces of chemical compounds. A deep neural
network was trained on hundreds of thousands of existing
chemical structures to construct three coupled functions: an
encoder, a decoder, and a predictor. The encoder converts the
discrete representation of a molecule into a real-valued
continuous vector, and the decoder converts these continuous
vectors back to discrete molecular representations. The predictor
estimates chemical properties from the latent continuous vector
representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical
structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical
structures, or interpolating between molecules. Continuous representations also allow the use of powerful gradient-based
optimization to efficiently guide the search for optimized functional compounds. We demonstrate our method in the domain of
drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.

■ INTRODUCTION

The goal of drug and material design is to identify novel
molecules that have certain desirable properties. We view this
as an optimization problem, in which we are searching for the
molecules that maximize our quantitative desiderata. However,
optimization in molecular space is extremely challenging,
because the search space is large, discrete, and unstructured.
Making and testing new compounds are costly and time-
consuming, and the number of potential candidates is
overwhelming. Only about 108 substances have ever been
synthesized,1 whereas the range of potential drug-like molecules
is estimated to be between 1023 and 1060.2

Virtual screening can be used to speed up this search.3−6

Virtual libraries containing thousands to hundreds of millions
of candidates can be assayed with first-principles simulations or
statistical predictions based on learned proxy models, and only

the most promising leads are selected and tested experimen-
tally.
However, even when accurate simulations are available,7

computational molecular design is limited by the search
strategy used to explore chemical space. Current methods
either exhaustively search through a fixed library,8,9 or use
discrete local search methods such as genetic algorithms10−15 or
similar discrete interpolation techniques.16−18 Although these
techniques have led to useful new molecules, these approaches
still face large challenges. Fixed libraries are monolithic, costly
to fully explore, and require hand-crafted rules to avoid
impractical chemistries. The genetic generation of compounds
requires manual specification of heuristics for mutation and
crossover rules. Discrete optimization methods have difficulty
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high-dimensional phase spaces,16 but rather infer a sam-
pler that can generate further samples from p, see Fig. 2.

conditional input generated atom

preceding atoms
CG beads

G
C

conditional input reference atom

C

fake

real

generated atom 
reference atom 

FIG. 2. Adversarial autoregressive approach: The genera-
tor, G, sequentially samples atom positions conditional on
the CG structure and the existing atoms. A critic network,
C, estimates the discrepancy between reference and generated
atoms.

B. Outer loop: Autoregressive model

Rather than learning to sample from
p(r1, . . . , rn|c1, . . . , cn,A1, . . . ,AN ) directly, we propose
to factorize p in terms of atomic contributions, where
the generation of one specific atom becomes conditional
on both CG beads as well as all the atoms previously
reconstructed.22 Based on this factorization we can train
a generative network, G, to generate and refine the atom
positions sequentially.

The backmapping scheme hereby consists of two steps:
(i) An initial structure is generated using the factoriza-
tion

p(r1, . . . , rn|c1, . . . , cn,A1, . . . ,AN ) =
nY

i=1

p
�
rS(i)|rS(1), . . . , rS(i�1), cS(1), . . . , cS(i),A1, . . . ,AN

�
, (1)

where S sorts the atoms in the order of reconstruction
and {rS(1), . . . , rS(i�1)} correspond to atoms that have
been already reconstructed. The dependence on earlier
predictions of G makes our approach autoregressive. This
procedure would be exact in a Markovian regime where
each atom interacts directly only with its predecessor
and successor (so-called “chain structures”30). Unfortu-
nately the complexity of condensed-phase liquids calls for
more feedback to avoid steric clashes; (ii) Intuitively, we
cannot optimally place an atom without its whole envi-
ronment present. This issue is compounded for ring-like
structures, like the phenyl group in polystyrene. To this
end we perform a variant of Gibbs sampling, which iter-
atively resamples along the sequence S several times.31

Each further iteration still updates one atom at a time,
but uses the knowledge of all other atoms. Experiments
confirmed that such Gibbs sampling leads to a good ap-
proximation of p, even with a small number of iterations
and fixing the atom ordering.

C. Representation

Iterative sampling algorithms, such as the Gibbs sam-
pler, have high computational cost. We hereby optimize
our approach by means of a robust learning algorithm
that can capture complex dependencies in the local en-
vironment directly.

Training

Prediction

Phase transition
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cover large subsets of CCS and rapidly sketch structure–property
relationships for complex thermodynamic properties.13,14 These
studies relied on the biomolecular Martini force field, a top-down
CG model aiming to reproduce thermodynamic-partitioning behav-
ior in different environments.15 While top-down CG models can
prove extremely efficient to parameterize and extend, they often
feature limited structural accuracy.16

To construct structurally accurate CG models, bottom-up
methods offer a more systematic route.17–19 They derive CG interac-
tions by matching microscopic information from a higher resolution
reference, for instance, the radial distribution function (RDF) or
other features of the many-body potential of mean force (MBPMF).
The reduction in the number of degrees of freedom makes these
target properties inherently dependent not only on the chemical
composition but also on the thermodynamic state point. It is,
thus, no surprise that most bottom-up CG studies have focused
on individual reference systems. There are various strategies to
build bottom-up CG models that are state-point and/or chemically
transferable. Intuition can go a long way: different molecules may
inspire a consistent CG mapping and set of bead types. For instance,
Wang and Deserno parameterized a CG model for phospholipid
membranes and showed that the same set of CG beads could be
used to construct reliable models for lipids with different satura-
tion levels.20 In general, however, intuition may not be a silver
bullet, particularly when bridging across chemical compositions.
Van der Vegt and co-workers have demonstrated that an approach
based on thermodynamic cycles can provide improved thermo-
dynamic and chemical transferability, with respect to alternative
bottom-up methods, subjecting to the limitations of the form
of the interaction potentials.21–23 Several groups have used local
density-dependent potentials to derive CG models that are trans-
ferable across binary mixture concentrations and phases, providing
a more accurate description of liquid–vapor interfaces.24–29 In the
context of biomolecules, Engin et al. demonstrated the utility of
“fragment-based” approaches by identifying particular interactions

that could be effectively transferred between distinct peptide units.30

Sanyal et al. recently expanded upon this perspective by develop-
ing an extended-ensemble relative-entropy method and constructed
a CG protein-backbone model that could accurately reproduce the
structures of over 200 different globular proteins.31

Counter to the expectation that a single model can repro-
duce the behavior of many different types of systems, transfer-
ability may require defining environment-dependent interactions.
“Ultra-coarse-grained” models are built from a series of internal
states.32 They can accurately model challenging liquid–vapor and
liquid–liquid interfaces,33 as well as complex hydrogen-bonding
environments.26 CG “conformational surface hopping” applies a
simple tuning of the state probabilities to transfer CG models across
both state points and chemistry.34,35 Other approaches aiming at
transferability tend to combine multiple references. For instance,
the extended-ensemble framework augments the force-matching
based multiscale coarse-graining (MSCG) method by averaging over
multiple MBPMFs.36 Mullinax and Noid applied the extended-
ensemble approach to build CG potentials of alkanes and alcohols
that aim to be transferable across liquid-state binary mixtures.36

Dunn and Noid later expanded upon this approach by lever-
aging a pressure-matching framework, in conjunction with the
force-matching method, to ensure the accuracy of both thermody-
namic and structural properties across state points.37 A conceptually
analogous approach was also implemented in the context of the
iterative-Boltzmann-inversion method.38

In this work, we extend the scope of bottom-up CG parame-
terizations to target a significantly larger collection of state points
and chemical compositions. Conceptually, we seek a CG parame-
terization scheme that benefits from multiple reference calculations
from various parts of the chemical compound space. We extend
the scope of structure-based and chemically transferable CG models
by simultaneously parameterizing several thousand small organic
molecules—the largest bottom-up CG parameterization, to the best
of our knowledge. Our data-driven and hierarchical approach is

FIG. 1. Schematic of our protocol to develop broad chemical transferability in a structure-based coarse-grained (CG) model. (a) Given an atomistic chemical space, identify
representative compounds (see Fig. 2). (b) Run reference (atomistic) liquid-phase simulations for various homogeneous liquids and binary mixtures. (c) Optimize a set of
CG bead types using an extended-ensemble force-matching scheme. (d) The bead types can readily be used to parameterize any molecule in the (smaller) CG chemical
space.
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EE distribution is also narrower, indicating more regularity in
the quality of the CG parametrizations. We find several state
points where the EE model greatly outperforms the SP model:
Molecule 3 mapping 0, Molecule 8 mapping 0, Molecule 1
mapping 0, see Fig. To do: Fig_4_3.pdf in SI . On the other
hand, we also find opposite casses: Molecule 6 mapping 0 and
Molecule 5.

FIG. 3. Distribution of JSD values using both the state-point specific
(circles) and transferable extended-ensemble (EE) models. The black
dashed line denotes the cutoff JSD value for “good” agreement with
atomistic RDFs, 0.002.

We now change perspective: we analyze the same set of
systems and RDFs, but average according to interaction types.
Fig. 4 presents a matrix-form heat map of JSD values, with
column-row combinations representing interaction pairs. The
lighter coloring of the EE interactions conveys the same mes-
sage as before: EE CG models are on average closer to the
atomistic reference, and the SP CG models show more out-
liers. The use of a logarithmic scale emphasizes strong de-
viations. While most of the EE RDFs are significantly below
the “good” agreement JSD cutoff, the previous averaging over
systems leads to larger JSD values (Fig. To do: Fig_4_3.pdf
in SI ). The imbalance in JSDs JFR: REVIEW! I don’t think
it’s clear here what you are talking about. Explicitly state that
the tail of the distribution in Fig. 3 is dominated by a few
interaction types. below or above the cutoff suggests the sig-
nificant impact of only one or a few interaction pairs in the
system average.

We now investigate the transferability of the EE model be-
yond the set of representative molecules, but within the con-
sidered chemical space of 3,441 C7O2 isomers. “Test” com-
pounds are selected based on their molecular SLATM distance
from the training compounds. The molecular SLATM vector
simply consists of the sum of aSLATM vectors in a molecule.
We quantify compound similarity from the 3,441 isomers to
the 19 representative molecules by means of a matrix of pair-
wise Euclidean distances between molecular SLATM repre-
sentations. To focus on molecules that share as little infor-
mation as possible from the pool of representative molecules,
we focus on the largest average distances. Tab. II reports

the SMILES string of the five furthest compounds, as well
as their scaled SLATM distance (i.e., the maximum Euclidean
distance is 1.0).

Molecule SMILES string Scaled SLATM distance
Index from training set

19 CCC(CC)OC(C)=O 0.43
20 CC(C)=CC(=C)C(O)=O 0.48
21 C=COC(=C)C(=C)C=O 0.88
22 CC(C)(C)C(C=O)C=O 0.91
23 CC(C)C(C)(C=O)C=O 0.91

TABLE II. Test molecules, SMILES strings, and SLATM distance to
the representative molecules scaled by the maximum distance.

The performance of the CG models for the test molecules,
as well as an illustration of their mappings, is shown in Fig. 5.
In analogy to Fig. 3, we average the JSDs of the SP and EE CG
RDFs for each system. We find that the largest improvement
from SP to EE parametrization corresponds to Molecule 19—
the closest compound to the representative set. It confirms that
a larger conformational overlap can benefit the transferable-
parametrization strategy. Other factors also play a role, as
indicated by the superior and comparable performance of the
EE model for Molecules 23 and 21, respectively, despite these
molecules being further away from the representative set on
average (see Table II). On the other hand, the EE model un-
derperforms compared to the SP model for Molecules 20 and
22. While Molecule 22 is also one of the furthest compounds
on average from the representative set, Molecule 20 is only
slightly further than Molecule 19. We defer a rationalization
of the results for these compounds to later in the text. Evi-
dently, an analysis of five molecules is by no means statisti-
cally representative of the chemical space considered. How-
ever, this provides a glimpse of the behavior of the EE model
for molecules with varying conformational overlap.

IV. DISCUSSION

Our results show that an extended-ensemble (EE)
parametrization across a wide set of small organic isomers
leads to more accurate and consistent CG models. This was
demonstrated in Fig. 3, where the distribution of EE JSD val-
ues shows a smaller mean and variance than the state-point
specific (SP) models. These results might be counterintuitive,
in that a force field that is parametrized using information av-
eraged over many simulations is expected to perform worse
than another of equal complexity that focuses on a particu-
lar reference ensemble. Instead the results indicate that better
transferability can go hand in hand with improved accuracy.
Beyond this overall improved accuracy, the reduced variance
of the JSD distribution indicates that the EE model will re-
sult in more reliable predictions. On the other hand, our anal-
ysis also reveals cases where the EE model underperforms,
compared to a more traditional SP parametrization. To better
understand the advantages and pitfalls of the EE parametriza-
tion, we investigate certain ensembles and the corresponding

Extended ensemble models 
are more accurate!  

Regularization effect

Joseph 
Rudzinski

Kiran 
Kanekal
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FIG. 6. Atomistic and CG RDFs of pure-liquid simulations and pairwise forces for Molecules (a) and (b) 3, (c) and (d) 6, (e) and (f) 9, and (g) and (h) 22, respectively. The
black, red, and green curves denote, respectively, the atomistic, SP, and EE RDFs for the fragments that map to the bead types listed in the top-right of each plot.

correlation matrix implies that the resulting potential will more
closely resemble that obtained from direct Boltzmann inversion
(i.e., the pair potential of mean force). Thus, our results support
previous work aimed at explicitly simplifying these correlations to
obtain more accurate and transferable interaction potentials.67,81

Next, we examine cases where the EE model underperforms
compared to the SP model. Figure 4 shows that the EE B12–B12
interaction, found in Molecules 6, 9, and 16 (see Figs. S15–S17
in the supplementary material), is significantly worse when com-
pared to the SP model, with average JSD values of 0.018 and 0.008,

FIG. 7. Mean forces (black curves) for the interactions corresponding to the RDFs shown in Fig. 6. (a) and (b) The three of the three-body contributions to the mean force
for both the SP (solid) and EE (dashed) models. (c) and (d) The two-body contributions to the B12–B12 mean force for the SP (solid) and EE (dashed) models.
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Smoothening removes long-range features
Dunn, Noid, J Chem Phys 144 (2016)

Same bead type: Averaging 
smoothens sharp features
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Multiscale description of chemical space 
exploits scale separation. Accelerates search 
for structure-property relationships, 
compound discovery

Multiscale modeling to explore chemical space

New perspective: Parametrize, calculate, analyze 
simulations across chemical space

Chemical-space perspective


