Tracking and Analysis of Active Droplet Dynamics

from image processing to non-equilibrium statistical physics

Matteo Scandola

Raffaello Potestio
Roberto Menichetti
Martin Hanczyc
Richard Loeffier
the European Union

Introduction

- Active matter systems can harness energy from their surroundings and propel themselves away from equilibrium.
- Even if composed by "simple" individual entities, they show complex collective behaviour of dynamical selfassembly.

Introduction

Realizations:

- Biological: Span all levels of living organisms.
- Synthetic: Systems capable of dynamical self-propelled behaviour akin to that found in living matter

Countless applications, e.g. bacterial micromotors [1], soft robotics, design of novel materials

[^0]
Introduction

The system under study in this project is made of synthetic active matter droplets immersed in a solution:

- Droplets: Ethil Silicitate (ES) \& Paraffin + Oil O Red dye for red droplets and Sudan B black dye for blue droplets [2], [3]
- Solution: Sodium dodecyl sulfate

Self propulsion arises due to the evaporation of ES.

Video: dynamics of active droplets (25b25r) - $20 x$

Introduction

- Stage 1: Active "Brownian" motion with no structures
- Stage 2: Medium-sized semipersistent structures
- Stage 3: Persistent arrangement in a quasiregular structure

Objectives

The long term goal is to predict large scale structures and dynamical assembly of the droplets by varying the system composition

The short term goal is to characterize the behaviour of the system starting from the experimental video:

1. Tracking procedure
\longrightarrow 2. Dynamical analysis
2. Structural analysis

Tracking procedure

Tracking procedure

Accurate droplet positions and radii over time

Quantitative characterization of the dynamics

Steps of the pipeline:

1. Video preprocessing
2. Features detection
3. Linking

Tracking procedure - Video preprocessing

Preprocessing steps

- Grey scaling to simplify data format
- Circular crop to remove the petri dish from the frame
- Sharpen kernel to enhance the droplets' borders

Tracking procedure - Video preprocessing

Preprocessing steps

- Grey scaling to simplify data format
- Circular crop to remove the petri dish from the frame
- Sharpen kernel to enhance the droplets' borders

Tracking procedure - Features detection

Deep learning solution:

Stardist [4]

U-net architecture $+$

Star convex prediction head

Dense Candidate Prediction

Tracking procedure - Features detection

Deep learning solution:
 Stardist [4]

 U-net architecture $+$

Tracking procedure - Features detection

To train and/or optimize the Stardist network we simulated an interacting ABP system and generated synthetic images resembling the post-processed data.

Tracking procedure - Features detection

Pretrained

Tracking procedure - Features detection

Pretrained + optimization

Tracking procedure - Linking

Instances' linking between frames, preserving droplets' identity

- Probability for the displacement of N non-interacting Brownian particles

$$
P\left(\left\{\delta_{i}\right\} \mid \tau\right)=\left(\frac{1}{4 \pi D \tau}\right)^{N} \exp \left(-\sum_{i=1}^{N} \frac{\delta_{i}^{2}}{4 D \tau}\right)
$$

most probable identity assignment across frames maximizes the probability

Tracking procedure - Outcomes

Result of the tracking procedure: highly accurate trajectory of each droplet.

Analysis

Analysis - Introduction

System characterization:

- Activity: Droplets' depth in the solution
- Dynamical properties: MSD \& Turning Angles distribution
- Structural analysis: Velocity Autocovariance \& RDF

Analysis - Droplets' depth analysis

Assumptions:

- Perfectly spherical droplets
- Droplets at frame $\mathbf{0}$ are half submerged

Radius as seen from above $\longrightarrow a$

$$
\left\{\begin{array}{l}
A_{c a p}=2 \pi r h \\
A_{c a p}=\pi\left(a^{2}+h^{2}\right)
\end{array} \Longrightarrow h=h(a)\right.
$$

Activity decays as the droplet sinks

Analysis - Window-based analyses

- Not well-founded since time-

Global time average analyses
(MSD, Turning Angles \& VACF) translational invariance is not met (activity decays over time)

- Mixing different activity regimes

For these reasons we perform a window-based analysis:

- Trajectories are divided into windows of 600 s
- Window slides over the full trajectory by a stride of 10 s

Analysis - Window-based analyses

For these reasons we perform a window-based analysis:

- Trajectories are divided into windows of 600 s
- Window slides over the full trajectory by a stride of 10 s

Analysis - Window-based analyses

Window-based analyses assume that the macroscopic statistical properties (activity) do not change significantly over the window time extent.

Analysis - Mean Squared Displacement (MSD)

We compute the time Average MSD of droplets of same species over the window portion of the trajectory:

$$
\left\langle\Delta \mathbf{r}^{2}(\tau)\right\rangle_{\gamma}=\frac{1}{N_{\gamma}} \sum_{k \in \gamma}{\overline{\delta^{2}(\tau)}}^{k} \text { where }{\overline{\delta^{2}(\tau)}}^{k}=\left\langle\left(\mathbf{r}_{t+\tau}^{k}-\mathbf{r}_{t}^{k}\right)^{2}\right\rangle_{t \in T}=\frac{1}{T-\tau} \sum_{t=0}^{T-\tau}\left(\mathbf{r}_{t+\tau}^{k}-\mathbf{r}_{t}^{k}\right)^{2}
$$

and perform power law fit in the [10-100] s region:

$$
\left\langle\Delta \mathbf{r}^{2}(\tau)\right\rangle_{\gamma}=K_{\alpha} \tau^{\alpha} \quad\left\{\begin{array}{r}
\text { diffusive for } \tau \gg 10 s \\
\text { ballistic for } \tau \ll 10 s
\end{array}\right.
$$

Analysis - Mean Squared Displacement (MSD)

power law fit:

$$
\left\langle\Delta \mathbf{r}^{2}(\tau)\right\rangle_{\gamma}=K_{\alpha} \tau^{\alpha}
$$

Diffusive properties

 depend on the activity of the system.
Analysis - Turning Angles Distribution

We characterize the droplet's rotational behaviour as a function of the activity.

In the standard ABP model
turning angles are
Gaussian distributed:

$$
P(\Delta \theta)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(\Delta \theta-\mu)^{2}}{2 \sigma^{2}}}
$$

We perform the window-based analysis to resolve explicit dependencies of the rotational diffusion of the droplets.

Analysis - Turning Angles Distribution

Gaussian distribution

 not adequate$$
P(\Delta \theta)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(\Delta \theta-\mu)^{2}}{2 \sigma^{2}}}
$$

Lorentzian distribution adequate

$$
P(\Delta \theta)=\frac{1}{\pi} \frac{\gamma}{(\Delta \theta-\mu)^{2}+\gamma^{2}}
$$

Lévy flight stochastic process for the rotational diffusion ? [5]

Analysis - Turning Angles Distribution

Discrepancies arise when droplets move slow and the uncertainty of detection becomes relevant

Analysis - Turning Angles Distribution - smooth

Discrepancies arise when droplets move slow and the uncertainty of
detection becomes relevant

Savitzky-Golay filter smoothing of trajectories
are applied

Analysis - Dynamical properties

Translational and rotational diffusive properties depend on the activity of the system

The next step is the characterization of the relaxation dynamics and structure formation through the means of VACF \& RDF

Analysis - Velocity autocovariance function

VACF are employed to investigate the structural arrest of a droplets' motion

$$
K^{a}(\tau)=\frac{1}{\sigma_{\alpha}^{2}} \frac{1}{N_{\alpha}} \sum_{i \in \alpha}\left\langle\left(\mathbf{v}^{i}(t)-\left\langle\mathbf{v}^{i}(t)\right\rangle\right) \cdot\left(\mathbf{v}^{i}(t+\tau)-\left\langle\mathbf{v}^{i}(t+\tau)\right\rangle\right)\right\rangle
$$

Analysis - Velocity autocovariance function

Medium activity:

Persistent plateaus

 characteristic of arrested dynamicsLow Activity:
Regular arrangement, arrested state

Analysis - Velocity autocovariance function - smooth

Analysis - Radial Distribution Function

Provides the characterization of the spatial local structures.

Approximation: Computed by dividing the average number of droplets at distance r by the the expected number of droplets assuming a homogeneous distribution.

$$
g_{\alpha, \beta}(r)=\frac{\left\langle\rho_{\alpha, \beta}(r)\right\rangle}{N_{\beta} V} \quad \text { with } \quad V=\pi\left(\delta r^{2}+2 r \delta r\right)
$$

Analysis - Radial Distribution Function

Consistency with steric interaction: $\quad g_{\alpha, \beta}\left(r<d_{d}\right)=0$

The first "solvation" shell appear after 2000 s for blue droplets, after 5000 s for red droplets.

Structure observed also in the mixed species RDF

Future developments

The future developments from this point are multiple:

- Improve smoothing via Kalman Filter
- Network-based analysis
- Orientation alignment and Velocity vector field analysis

Future developments

The future developments from this point are multiple:

- Improve smoothing via Kalman Filter
- Network-based analysis
- Orientation alignment and Velocity vector field analysis

$$
E(G, w)=-\sum_{u v \in E} p_{u v} \log \left(p_{u v}\right) \quad p_{u v}=\frac{w_{u v}}{\sum_{u v \in E} w_{u v}}
$$

Future developments - orientation alignment

The future developments from this point are multiple:

- Improve smoothing via Kalman Filter
- Network-based analysis
- Orientation alignment and Velocity vector field analysis

Future developments - velocity field

The future developments from this point are multiple:

- Improve smoothing via Kalman Filter
- Network-based analysis
- Orientation alignment and Velocity vector field analysis

Thanks for your attention!

References

1. Vizsnyiczai, G., Frangipane, G., Maggi, C. et al. Light controlled 3D micromotors powered by bacteria. Nat Commun 8, 15974 (2017).
2. Muneyuki Matsuo, Hiromi Hashishita, Shinpei Tanaka, and Satoshi Nakata. Sequentially selective coalescence of binary self-propelled droplets upon collective motion. Langmuir, 39(5):2073-2079, 2023. PMID: 36692295.
3. R.J.G. Löffler. New Materials for Studies on Nanostructures and Spatio-temporal Patterns Self-organized by Surface Phenomena. 2021
4. Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene Myers. Starconvex polyhedra for 3d object detection and segmentation in microscopy. In The IEEE Winter Conference on Applications of Computer Vision (WACV), March 2020.
5. M.F. Shlesinger, G.M. Zaslavsky, and U. Frisch. Lévy Flights and Related Topics in Physics: Proceedings of the International Workshop Held at Nice, France, 27-30 June 1994. Lecture Notes in Physics. Springer Berlin Heidelberg, 1995

Extra Material - RDF

Extra Material - Speed distribution

Raw

Smooth

Extra Material - TDA on Graph

Persistent homology

Vietoris-Rips filtration

[^0]: Vizsnyiczai, G., Frangipane, G., Maggi, C. et al. Light controlled 3D micromotors powered by bacteria. Nat Commun 8, 15974 (2017). https://doi.org/10.1038/ncomms15974

