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• Active matter systems can harness 
energy from their surroundings and 
propel themselves away from 
equilibrium. 

• Even if composed by "simple" 
individual entities, they show complex 
collective behaviour of dynamical self-
assembly.
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Realizations:  

• Biological: Span all levels of living 
organisms. 

• Synthetic: Systems capable of 
dynamical self-propelled behaviour 
akin to that found in living matter

Countless applications, e.g. 
bacterial micromotors [1], soft 
robotics, design of novel materials
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The system under study in this project 
is made of synthetic active matter 
droplets immersed in a solution: 

• Droplets: Ethil Silicitate (ES) & 
Paraffin + Oil O Red dye for red 
droplets and Sudan B black dye for 
blue droplets [2], [3] 

• Solution: Sodium dodecyl sulfate 

Self propulsion arises due to the 
evaporation of ES. 

Video: dynamics of active droplets (25b25r) — 20 x 
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• Stage 1: Active "Brownian" 
motion with no structures 

• Stage 2: Medium-sized semi-
persistent structures 

• Stage 3: Persistent 
arrangement in a quasi- 
regular structure
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Objectives

1. Tracking procedure  

2. Dynamical analysis 

3. Structural analysis
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The short term goal is to 
characterize the behaviour of 

the system starting from the 
experimental video:

The long term goal is to predict large scale structures and 
dynamical assembly of the droplets by varying the system 

composition



Tracking procedure
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Tracking procedure

Steps of the pipeline: 

1. Video preprocessing 

2. Features detection 

3. Linking 

Quantitative characterization 
of the dynamics 

Accurate droplet positions 
and radii over time
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Preprocessing steps 

• Grey scaling to simplify data 
format 

• Circular crop to remove the 
petri dish from the frame 

• Sharpen kernel to enhance 
the droplets’ borders

Tracking procedure - Video preprocessing
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Tracking procedure - Features detection

Deep learning solution: 

Stardist [4]

U-net architecture

 Star convex prediction head 
+

114. Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene Myers. Star- convex polyhedra for 3d object detection and segmentation in 
microscopy. In The IEEE Winter Conference on Applications of Computer Vision (WACV), March 2020. 



Tracking procedure - Features detection

Deep learning solution: 

Stardist [4]

U-net architecture

 Star convex prediction head 
+

124. Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene Myers. Star- convex polyhedra for 3d object detection and segmentation in 
microscopy. In The IEEE Winter Conference on Applications of Computer Vision (WACV), March 2020. 



Tracking procedure - Features detection
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To train and/or optimize the Stardist 
network we simulated an interacting 
ABP system and generated synthetic 
images resembling the post-processed 

data.



Tracking procedure - Features detection
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Pretrained



Tracking procedure - Features detection
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Pretrained + optimization



Tracking procedure - Linking

P ({δi} |τ) = ( 1
4πDτ )

N

exp (−
N

∑
i=1

δ2
i

4Dτ )

• Probability for the displacement of N 
non-interacting Brownian particles 

most probable identity assignment 
across frames maximizes the 

probability

Instances’ linking between frames, preserving droplets’ identity 
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Tracking procedure - Outcomes

Result of the tracking procedure: highly accurate trajectory of each droplet.
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Analysis
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Analysis - Introduction

System characterization: 

• Activity: Droplets’ depth in the solution 

• Dynamical properties: MSD & Turning Angles distribution 

• Structural analysis: Velocity Autocovariance & RDF
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Analysis - Droplets’ depth analysis

{
Acap = 2πrh

Acap = π(a2 + h2)
⟹ h = h(a)

Assumptions: 

• Perfectly spherical droplets 

• Droplets at frame 0 are half submerged

Activity decays as the droplet sinks

Radius as seen from above a
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Analysis - Window-based analyses

• Not well-founded since time-
translational invariance is not 
met (activity decays over time) 

• Mixing different activity regimes

Global time average 
analyses 

(MSD, Turning Angles & VACF)
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For these reasons we perform a window-based analysis: 

• Trajectories are divided into windows of 600 s 

• Window slides over the full trajectory by a stride of 10 s 



window lenght

stride

trajectory

Wind 1 Wind 2

Analysis - Window-based analyses
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For these reasons we perform a window-based analysis: 

• Trajectories are divided into windows of 600 s 

• Window slides over the full trajectory by a stride of 10 s 



window lenght

stride

trajectory

Wind 1 Wind 2

Window-based analyses assume that the macroscopic 
statistical properties (activity) do not change significantly 

over the window time extent.
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Analysis - Window-based analyses



Analysis - Mean Squared Displacement (MSD)

⟨Δr2(τ)⟩γ =
1
Nγ ∑

k∈γ

δ2(τ)
k

where δ2(τ)
k

= ⟨(rk
t+τ − rk

t )2⟩t∈T =
1

T − τ

T−τ

∑
t=0

(rk
t+τ − rk

t )2

We compute the time Average MSD of droplets of same species 
over the window portion of the trajectory:

{diffusive for τ ≫ 10 s
ballistic for τ ≪ 10 s

⟨Δr2(τ)⟩γ = Kατα

and perform power law fit in the [10 - 100] s region:
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Diffusive properties 
depend on the activity 

of the system.

⟨Δr2(τ)⟩γ = Kατα

power law fit:

Analysis - Mean Squared Displacement (MSD)

Kαα
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Analysis - Turning Angles Distribution

P(Δθ) =
1

σ 2π
e− (Δθ − μ)2

2σ2

We characterize the droplet’s 
rotational behaviour as a 
function of the activity.

In the standard ABP model 
turning angles are 

Gaussian distributed:

We perform the window-based analysis  
to resolve explicit dependencies of the 

rotational diffusion of the droplets.
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Analysis - Turning Angles Distribution

P(Δθ ) =
1

σ 2π
e− (Δθ − μ)2

2σ2

P(Δθ ) =
1
π

γ
(Δθ − μ)2 + γ2

Lorentzian distribution 
adequate 

Lévy flight stochastic process 
for the rotational diffusion ? [5]

Gaussian distribution 
not adequate 

275. M.F. Shlesinger, G.M. Zaslavsky, and U. Frisch. Lévy Flights and Related Topics in Physics: Proceedings of the International Workshop Held at Nice, France, 27–30 June 1994. Lecture Notes in Physics. Springer Berlin Heidelberg, 1995 



Analysis - Turning Angles Distribution

Discrepancies arise 
when droplets move slow 

and the uncertainty of 
detection becomes 

relevant

28



Analysis - Turning Angles Distribution - smooth

Savitzky-Golay filter 
smoothing of trajectories 

are applied

Lorentzian distribution is preserved 29

Discrepancies arise 
when droplets move slow 

and the uncertainty of 
detection becomes 

relevant



Analysis - Dynamical properties

Translational and rotational diffusive properties depend on 
the activity of the system

The next step is the characterization of the relaxation dynamics 
and structure formation through the means of VACF & RDF
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Analysis - Velocity autocovariance function

Ka(τ) =
1
σ2

α

1
Nα ∑

i∈α
⟨(vi(t) − ⟨vi(t)⟩) ⋅ (vi(t + τ) − ⟨vi(t + τ)⟩)⟩

VACF are employed to 
investigate the structural 

arrest of a droplets’ motion
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Analysis - Velocity autocovariance function

High activity:  

Fast decorrelation

Medium activity: 

Persistent plateaus 
characteristic of arrested 

dynamics

Low Activity: 

Regular arrangement, 
arrested state
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Analysis - Velocity autocovariance function - smooth

High activity:  

Fast decorrelation

Medium activity: 

Persistent plateaus 
characteristic of arrested 

dynamics

Low Activity: 

Regular arrangement, 
arrested state
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Analysis - Radial Distribution Function

gα,β(r) =
⟨ρα,β(r)⟩

NβV
with V = π(δr2 + 2rδr)

Provides the characterization of the spatial local structures. 

Approximation: Computed by dividing the average 
number of droplets at distance r by the the expected 

number of droplets assuming a homogeneous 
distribution.
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Analysis - Radial Distribution Function
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gα,β(r < dd) = 0
Consistency with steric 
interaction:

The first “solvation” shell appear 
after 2000 s for blue droplets, after 

5000 s for red droplets. 

Structure observed also in the mixed 
species RDF



Future developments
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The future developments from this point 
are multiple: 

• Improve smoothing via Kalman Filter 

• Network-based analysis 

• Orientation alignment and Velocity 
vector field analysis
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E(G, w) = − ∑
uv∈E

puv log(puv) puv =
wuv

∑uv∈E wuv

The future developments from this point 
are multiple: 

• Improve smoothing via Kalman Filter 

• Network-based analysis 

• Orientation alignment and Velocity 
vector field analysis



Future developments - orientation alignment
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The future developments from this point 
are multiple: 

• Improve smoothing via Kalman Filter 

• Network-based analysis 

• Orientation alignment and Velocity 
vector field analysis



Future developments - velocity field
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The future developments from this point 
are multiple: 

• Improve smoothing via Kalman Filter 

• Network-based analysis 

• Orientation alignment and Velocity 
vector field analysis



Thanks for your attention!
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Extra Material - RDF
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Extra Material - Speed distribution
Raw Smooth

Raw
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Extra Material - TDA on Graph

Persistent homology

Vietoris-Rips filtration
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