FOR MATERIALS

TRENTO ETC* WORKSHOP / TRUSTWORTHY ML

Trustworthy machine learning for materials

Federico Grasselli – COSMO Lab EPFL

EPFL Uncertainty Quantification (UQ)

- Pillar of Scientific Method
- ML statistical nature
- Sources of uncertainty
- So far scarcely employed:
 - lack of standards
 - large cost (training and evaluation)
 - ad hoc training:
 - (MC dropout, deep and shallow ensembles, Gaussian mixture models, committees)

EPFL Uncertainty Quantification (UQ)

- Pillar of Scientific Method
- ML statistical nature
- Sources of uncertainty
- So far scarcely employed:
 - lack of standards
 - large cost (training and evaluation)
 - ad hoc training:
 - (MC dropout, deep and shallow ensembles, Gaussian mixture models, committees)

EPFL Use of UQ in atomistic simulations

- Uncertainty aware simulations
- Reweight via committee of models

Imbalzano, Zhuang, Kapil, Rossi, Engel, Grasselli, and Ceriotti, J. Chem. Phys. 154, 074102 (2021)

EPFL Use of UQ in atomistic simulations

- Uncertainty aware simulations
- Reweight via committee of models

Loss:

$$\mathcal{L}(\mathbf{w}|D) = \sum_{i=1}^{N_{\text{train}}} \ell[\tilde{y}_i(\mathbf{x}_i, \mathbf{w}), y_i]$$

• How "rigid" is the prediction for a given input x_* ?

Loss:

$$\mathcal{L}(\mathbf{w}|D) = \sum_{i=1}^{N_{\text{train}}} \ell[\tilde{y}_i(\mathbf{x}_i, \mathbf{w}), y_i]$$

- How "rigid" is the prediction for a given input $x_\star ?$
- Constrained minimization of $\mathcal{L}_c = \mathcal{L} + \lambda (\epsilon_* \tilde{y}(\mathbf{x}_*, \mathbf{w}))$

Loss:

$$\mathcal{L}(\mathbf{w}|D) = \sum_{i=1}^{N_{\text{train}}} \ell[\tilde{y}_i(\mathbf{x}_i, \mathbf{w}), y_i]$$

- $\hfill \hfill \hfill$
- Constrained minimization of $\mathcal{L}_c = \mathcal{L} + \lambda (\epsilon_* \tilde{y}(\mathbf{x}_*, \mathbf{w}))$
- For $\epsilon_{\star} \approx \tilde{y}(\mathbf{x}_{\star}, \mathbf{w}_{o})$ we have $\mathcal{L}_{c}(\epsilon_{\star}|D) \approx \mathcal{L}(\mathbf{w}_{o}|D) + \frac{1}{2}R_{\star}(\epsilon_{\star} - \tilde{y}(\mathbf{x}_{\star}, \mathbf{w}_{o}))^{2}$

with

$$R_{\star} \equiv \frac{\partial^{2} \mathcal{L}}{\partial \epsilon_{\star}^{2}} \bigg|_{\epsilon_{\star} = \tilde{y}(\mathbf{x}_{\star}, \mathbf{w}_{o})} = \left[\frac{\partial \tilde{y}_{\star}}{\partial \mathbf{w}} \bigg|_{\mathbf{w}_{o}} \left[\frac{\partial^{2} \mathcal{L}}{\partial \mathbf{w}^{2}} \bigg|_{\mathbf{w}_{o}} \right]^{-1} \frac{\partial \tilde{y}_{\star}}{\partial \mathbf{w}} \bigg|_{\mathbf{w}_{o}} \right]^{-1}$$

Bigi, Chong, Ceriotti & Grasselli, arXiv:2403.02251 (2024)

- Fitted models: $P(\mathbf{w}) \propto \exp(-\mathcal{L}(\mathbf{w}))$
- Laplace approximation:
 - 2nd-order approximation of the loss
 - Gaussian approx. of the probability density

- Fitted models: $P(\mathbf{w}) \propto \exp(-\mathcal{L}(\mathbf{w}))$
- Laplace approximation:
 - 2nd-order approximation of the loss
 - Gaussian approx. of the probability density

• Linear regression:
$$\tilde{y} = \mathbf{w} \cdot \mathbf{x} \rightarrow \frac{\partial \tilde{y}}{\partial \mathbf{w}} \equiv \mathbf{x}$$

• PR is simple:

$$\boldsymbol{R}_{\star} = [\mathbf{X}_{\star} \cdot [\mathbf{X}^{\top} \mathbf{X}]^{-1} \mathbf{X}_{\star}]^{-1}$$

• $\frac{1}{R_{\star}}$ has got the same shape of variance in Gaussian process regression

EPFL What about Neural Networks?

- Statistical theory of NNs. Training and over-parametrization
- Central Limit Theorem \rightarrow infinitely wide NNs as Gaussian processes
- Last-layer features f

EPFL Last-Layer Prediction Rigidity

• Uncertainty simplifies to (the inverse of) Last-Layer PR:

EPFL Last-Layer Prediction Rigidity

• Uncertainty simplifies to (the inverse of) Last-Layer PR:

- Effectively the uncertainty of a linear model
- Very easy to calculate, two hyperparameters must be tuned
- Doesn't depend on target values of the training set

EPFL Last-Layer PR: results QM9 dataset

EPFL Last-Layer PR: results QM9 dataset

TRENTO ETC* WORKSHOP / TRUSTWORTHY ML FOR MATERIALS

EPFL Last-Layer PR results: California housing \$

EPFL Last-Layer PR results: California housing \$

EPFL Last-Layer PR results

Very good uncertainty estimates across a wide variety of problems

EPFL **Last-Layer PR results**

Very good uncertainty estimates across a wide variety of problems

v=x

 6×10^{0}

Estimated variance

101

	RMSE				NLL			
Dataset	PBP	MCD	DE	LLPR	PBP	MCD	DE	LLPR
Concrete	5.67:00	5.23 ±0.12	6.03:0.13	5.26	3.16+0.02	$3.04_{\pm 0.02}$	3.06:001	3.09
Energy	$1.80_{10.05}$	$1.66_{+0.04}$	2.09	$0.49_{\pm 0.03}$	2.04	$1.99_{\pm 0.02}$	$1.38_{10.05}$	0.69
Kin8nm	0.10	$0.10_{10.00}$	0.09	0.08	-0.90	-0.95	-1.20	-1.12
Naval	0.01	$0.01_{\pm 0.00}$	0.00	0.00	-3.73	$-3.80_{\pm 0.01}$	-5.63	$-7.07_{\pm 0.08}$
Power	4.12+0.03	$4.02_{\pm 0.01}$	4.11+0.01	3.94 +0.07	2.84	2.80	2.79±0.01	2.83+4.02
Protein	4.73	4.36	4.71	$4.18_{10.02}$	2.97:000	2.89	2.83	2.91
Wine	0.64	0.62	0.64	$0.63_{\pm 0.02}$	0.97	0.93±0.01	0.94	$1.02_{\pm 0.03}$
Yacht	1.02	1.11+0.08	1.58	1.19	1.63.0.02	1.55	1.18+0.05	1.58+4.20
Year	8.88.xxx	8.86 _{48/8}	8.89	8.91.ma	3.60.xxx	3.59 _{4N/A}	3.35 _{48/A}	3.61.ma

21

EPFL Last-Layer PR: Summary

- Cheap, practical, scalable, a-posteriori
- Explains the success of last-layer approximations
- Pre-print on arxiv¹, code available @ https://github.com/frostedoyster/llpr

LLPR

PR for local predictions

- Atomistic models: local energies are **not** observables
- Yet used in
 - constructing ML models $E(A) = \sum_{i \in A} E_i$
 - heuristic analyses

PR for local predictions

- Atomistic models: local energies are not observables
- Yet used in
 - constructing ML models $E(A) = \sum_{i \in A} E_i$
 - heuristic analyses

Adapted from Deringer, Pickard, Csányi. PRL 120 156001 (2018)

PR for local predictions

- Atomistic models: local energies are **not** observables
- Yet used in
 - constructing ML models $E(A) = \sum_{i \in A} E_i$
 - heuristic analyses

a defective icosahedron

vacant B13 site **B15**

B13

B15

fusec

 How robust are these? Use the same formulation of constrained loss, but now for *local predictions*

EPFL Local PR: amorphous silicon

EPFL Local PR: amorphous silicon

Chong, Grasselli, Ben Mahmoud, Morrow, Deringer and Ceriotti, JCTC 19, 8020 (2023)

EPFL Local PR: amorphous silicon

 Dramatic increase of local PR by adding structures containing under/over coordinated environments

EPFL Local PR: carbon films

Selective increase of local PR in low/high density carbon films

model trained on 1000 **amorphous** carbon structures replace 10 random structures with **crystalline diamond**

enhancement in LPR mostly for high density film

Chong, Grasselli, Ben Mahmoud, Morrow, Deringer and Ceriotti, JCTC 19, 8020 (2023)

EPFL Local PR: carbon films

Selective increase of local PR in low/high density carbon films

model trained on 1000 **amorphous** carbon structures

replace 10 random structures with crystalline graphite

enhancement in LPR mostly for low density film

Chong, Grasselli, Ben Mahmoud, Morrow, Deringer and Ceriotti, JCTC 19, 8020 (2023)

30

EPFL Remarks, Conclusions and Outlook

- Low-cost uncertainty on new predictions for pretrained models
- Constrained loss minimization is just a theoretical tool:
 - no need to train a model with constrained loss to get PR and uncertainties
 - no need for target values
- Rigidity of local predictions is readily obtained with same formalism

EPFL Remarks, Conclusions and Outlook

- Sample last-layer weights according to Laplace approximation → ensemble
- Propagate uncertainty to derived quantities
- Use it on thermodynamic observables

Kellner & Ceriotti, https://arxiv.org/abs/2402.16621 (2024)

EPFL Acknowledgements

Sanggyu Chong, EPFL

Filippo Bigi, EPFL

Chiheb Ben Mahmoud, EPFL, now Oxford University

Michele Ceriotti, EPFL

TRENTO ETC* WORKSHOP / TRUSTWORTHY ML FOR MATERIALS

Backup slides

Federico Grasselli – COSMO Lab EPFL

EPFL Use of UQ in atomistic simulations

Uncertainty aware simulations

Imbalzano, Zhuang, Kapil, Rossi, Engel, Grasselli, and Ceriotti, J. Chem. Phys. 154, 074102 (2021)

EXTENSION TO NEURAL NETWORKS

- Statistical theory of NNs. Training and over-parametrization
- Central Limit Theorem \rightarrow infinitely wide NNs as Gaussian processes
- Two deterministic kernels
 - Neural-Network Gaussian Process (NNGP)¹: initialization
 - Neural Tangent Kernel (NTK)²: training
- Distribution of predictions³ during training is Gaussian
- Evolution of mean and variance is deterministic!

$$\begin{aligned} \mu_{\star} &= \mathbf{k}_{\text{NTK}}(\star, \mathcal{D}) \, \mathbf{K}_{\text{NTK}}^{-1} \left(\mathbf{I} - e^{-\eta \mathbf{K}_{\text{NTK}} t} \right) \mathbf{y} \\ \sigma_{\star}^{2} &= k_{\text{NNGP}}(\star, \star) \\ &+ \mathbf{k}_{\text{NTK}}(\star, \mathcal{D}) \, \mathbf{K}_{\text{NTK}}^{-1} \left(\mathbf{I} - e^{-\eta \mathbf{K}_{\text{NTK}} t} \right) \mathbf{K}_{\text{NNGP}} \left(\mathbf{I} - e^{-\eta \mathbf{K}_{\text{NTK}} t} \right) \mathbf{K}_{\text{NTK}}^{-1} \mathbf{k}_{\text{NTK}} (\mathcal{D}, \star) \\ &- \mathbf{k}_{\text{NTK}}(\star, \mathcal{D}) \, \mathbf{K}_{\text{NTK}}^{-1} \left(\mathbf{I} - e^{-\eta \mathbf{K}_{\text{NTK}} t} \right) \mathbf{k}_{\text{NNGP}} (\mathcal{D}, \star) \\ &- \mathbf{k}_{\text{NNGP}}(\star, \mathcal{D}) \left(\mathbf{I} - e^{-\eta \mathbf{K}_{\text{NTK}} t} \right) \mathbf{K}_{\text{NTK}}^{-1} \mathbf{k}_{\text{NTK}} (\mathcal{D}, \star) \end{aligned}$$
[1] Lee et al. arXiv:1711.00165 (2017) [2] Jacot et al. NIPS (2018) [3] Lee et al. NIPS (2019) \end{aligned}

FOR MATERIALS

EXTENSION TO NEURAL NETWORKS

Toy example (from Wikipedia)

EPFL Last-layer Prediction Rigidity (LLPR)

- A last-layer approximation of the prediction rigidity recovers:
 - the NNGP exactly at initialization

$$K_{\text{NNGP}}(\mathbf{x}_i, \mathbf{x}_j) \approx \sigma_w^2 \mathbf{f}_i^\top \mathbf{f}_j \Longrightarrow \mathbf{K}_{\text{NNGP}}(\mathcal{D}, \mathcal{D}) \approx \sigma_w^2 \mathbf{F} \mathbf{F}^\top$$

the NTK to a good approximation

$$K_{\text{NTK}}(\mathbf{x}_i, \mathbf{x}_j) \approx c \left(\frac{\partial \tilde{y}(\mathbf{x}_i, \mathbf{w})}{\partial \mathbf{w}_L}\right)^\top \frac{\partial \tilde{y}(\mathbf{x}_j, \mathbf{w})}{\partial \mathbf{w}_L} = c \mathbf{f}_i^\top \mathbf{f}_j \Longrightarrow \mathbf{K}_{\text{NTK}}(\mathcal{D}, \mathcal{D}) \approx c \mathbf{F} \mathbf{F}^\top$$

EPFL Last-layer Prediction Rigidity (LLPR)

full NTK

Last-layer NTK: weaker dependence on "time"

EPFL California housing \$: NN width test

