

A computation-dissipation tradeoff for machine learning at the mesoscale

Alessandro Ingrosso

joint work with E. Panizon

Physical Review E 109 (1), 014132

The elephant in the room of Machine Learning

The electricity bill

An energy-aware framework for Machine Learning

What is the impact of **energetic costs** on **performance** and **internal representations**?

How can we construct **cost-effective** neural networks?

• Two or Three Things I Know About Stochastic Thermodynamics

- Two or Three Things I Know About Stochastic Thermodynamics
- Stochastic Thermodynamics and computation

- Two or Three Things I Know About Stochastic Thermodynamics
- Stochastic Thermodynamics and computation
- Computation-dissipation bottleneck in a toy model of computation

- Two or Three Things I Know About Stochastic Thermodynamics
- Stochastic Thermodynamics and computation
- Computation-dissipation bottleneck in a toy model of computation
- Supervised learning in mesoscopic networks

- Two or Three Things I Know About Stochastic Thermodynamics
- Stochastic Thermodynamics and computation
- Computation-dissipation bottleneck in a toy model of computation
- Supervised learning in mesoscopic networks
- Conclusions and Perspectives

Thermodynamics

Macroscopic observable on equilibrium ensembles

Thermodynamics

Macroscopic observable on equilibrium ensembles

Stochastic Thermodynamics

Fluctuating thermodynamic quantities (e.g. heat, work, entropy) on single trajectories of **mesoscopic systems**

Continuous-time Markov Chain:

states of a coarse-grained system $\frac{d}{dt}p\left(s,t\right) = \sum_{s'} \left[k_{ss'}\left(t\right)p\left(s',t\right) - k_{s's}\left(t\right)p\left(s,t\right)\right]$

Continuous-time Markov Chain:

states of a coarse-grained system

 $rac{d}{dt}p\left(s,t
ight)=\sum_{s'}\left[k_{ss'}\left(t
ight)p\left(s',t
ight)-k_{s's}\left(t
ight)p\left(s,t
ight)
ight]$

Thermodynamic consistence: jump rates from interaction with a (many) reservoir(s);

$$rac{k_{ss'}}{k_{s's}}=e^{q_{ss'}/\kappa_B T}$$

Continuous-time Markov Chain:

states of a coarse-grained system $\frac{d}{dt}p\left(s,t\right) = \sum_{s'} \left[k_{ss'}\left(t\right)p\left(s',t\right) - k_{s's}\left(t\right)p\left(s,t\right)\right]$

Thermodynamic consistence: jump rates from interaction with a (many) reservoir(s);

$$rac{k_{ss'}}{k_{s's}}=e^{q_{ss'}/\kappa_B T}$$

Entropy production:

entropy production \rightarrow irreversibility

$$s^{tot}\left(oldsymbol{x}
ight) = \kappa_B \log \left(rac{P_{oldsymbol{x}}^F\left(\lambda
ight)}{P_{oldsymbol{\hat{x}}}^B\left(\hat{\lambda}
ight)}
ight)$$

entropy production ---- irreversibility

$$s^{tot}\left(oldsymbol{x}
ight) = \kappa_B \log \left(rac{P_{oldsymbol{x}}^F\left(\lambda
ight)}{P_{oldsymbol{\hat{x}}}^B\left(\hat{\lambda}
ight)}
ight)$$

Fluctuation Relations

detailed $rac{P_F\left(s^{tot};\lambda
ight)}{P_B\left(-s^{tot};\hat{\lambda}
ight)}=e^{s^{tot}/\kappa_B T}$

$$\left. e^{-s^{tot}(oldsymbol{x})/\kappa_B T}
ight
angle_F = 1$$

integral

entropy production <---- irreversibility

$$s^{tot}\left(oldsymbol{x}
ight) = \kappa_B \log \left(rac{P_{oldsymbol{x}}^F\left(\lambda
ight)}{P_{oldsymbol{\hat{x}}}^B\left(\hat{\lambda}
ight)}
ight)$$

Fluctuation Relations

entropy production <---- irreversibility

$$s^{tot}\left(oldsymbol{x}
ight) = \kappa_B \log \left(rac{P_{oldsymbol{x}}^F\left(\lambda
ight)}{P_{oldsymbol{\hat{x}}}^B\left(\hat{\lambda}
ight)}
ight)$$

[[]Collin et al, Nature 2005]

Towards a ST of computation

Landauer Bound

Logically irreversible manipulation ->

entropy increase in noninformation bearing degrees of freedom

Towards a ST of computation

Landauer Bound

Logically irreversible manipulation \rightarrow

entropy increase in noninformation bearing degrees of freedom

Informally: Erasing a bit costs

s
$$Q \geq \kappa_B T \log 2$$

Towards a ST of computation

Landauer Bound

Logically irreversible manipulation \rightarrow

entropy increase in noninformation bearing degrees of freedom

Informally: Erasing a bit costs

$$Q \geq \kappa_B T \log 2$$

An *abstract* formulation of dissipation in computing machines:

- generalization of Landauer Bound;
- "mismatch" cost;

- ... *mostly* agnostic to implementation.

David Wolpert

Can we build a ST of neural networks?

Can we build a ST of neural networks?

Not really!

Can we build a ST of neural networks?

Not really! But...

an implementation-aware theory in **mesoscopic**, **stochastic** versions of neural networks

Supervised learning in neural networks

Supervised learning in neural networks

Supervised learning in neural networks

Caveat

Constraints on the connectivity should be taken into account in general for a consistent physical interpretation of our general parametrization.

Supervised learning task:

 $p\left(x,y
ight)$ or $\mathcal{D}=\left(x,y
ight)$

Supervised learning task: $p\left(x,y
ight)$ or $\mathcal{D}=\left(x,y
ight)$

Construct optimal representations through dynamics:

$$x \stackrel{ heta}{ o} s o y$$

Supervised learning task: $p\left(x,y
ight)$ or $\mathcal{D}=\left(x,y
ight)$

Construct optimal representations through dynamics:

 $x \stackrel{ heta}{ o} s o y$

Trade off performance and entropy production at steady state:

$$\mathcal{L}\left(heta
ight)=\mathcal{G}(heta)-lpha\Sigma\left(heta
ight)$$

Max computational performance

Min entropy production at SS

Supervised learning task: $p\left(x,y
ight)$ or $\mathcal{D}=\left(x,y
ight)$

Construct optimal representations through dynamics:

 $x \stackrel{ heta}{
ightarrow} s
ightarrow y$

Trade off performance and entropy production at steady state:

$$\mathcal{L}(\theta) = \mathcal{G}(\theta) - \alpha \Sigma(\theta)$$
Max computational performance Min entropy production at SS
e.g. $\mathcal{G} = I(s, y)$

$$\left[I(s, y) = H(s) - H(s|y) \right]$$

Supervised learning task: $p\left(x,y
ight)$ or $\mathcal{D}=\left(x,y
ight)$

Construct optimal representations through dynamics:

 $x \stackrel{ heta}{ o} s o y$

Trade off performance and entropy production at steady state:

$$\mathcal{L}(\theta) = \mathcal{G}(\theta) - \alpha \Sigma(\theta)$$
Max computational performance Min entropy production at SS
e.g. $\mathcal{G} = I(s, y)$

$$I(s, y) = H(s) - H(s|y)$$

$$\Sigma(\theta) = \sum_{x} p(x)\sigma(x, \theta)$$
or
$$\Sigma(\theta) = \frac{1}{|\mathcal{D}|} \sum_{x} \sigma(x, \theta)$$

Supervised learning task:

 $p\left(x,y
ight)$ or $\mathcal{D}=\left(x,y
ight)$

Construct optimal representations through dynamics:

 $x \stackrel{ heta}{ o} s o y$

Trade off performance and entropy production at steady state:

 $\mathcal{L}(\theta) = \mathcal{G}(\theta) - \alpha \Sigma(\theta)$ Max computational performance Min entropy production at SS
e.g. $\mathcal{G} = I(s, y)$ $\left(I(s, y) = H(s) - H(s|y)\right)$ $\Sigma(\theta) = \sum_{x} p(x)\sigma(x, \theta)$ or $\Sigma(\theta) = \frac{1}{|\mathcal{D}|} \sum_{x} \sigma(x, \theta)$

Information Bottleneck (Tishby et al)

x
ightarrow s
ightarrow y

$$\mathcal{L}\left[p\left(s|x
ight)
ight]=I\left(s,x
ight)-eta I\left(s,y
ight)$$

Max information compression

Min loss of taskrelevant information

Rates:

A plausible model for a sensory complex:

i) coupled chemoreceptorsii) transcription regulation with cross-feedbackiii) ...

Rates:

A plausible model for a sensory complex:

i) coupled chemoreceptorsii) transcription regulation with cross-feedbackiii) ...

Rates:

A plausible model for a sensory complex:

i) coupled chemoreceptorsii) transcription regulation with cross-feedbackiii) ...

Nonequilibrium steady states are optimal for I(s, x) at high correlation and small noise

[Ngampruetikorn et al, Nat Comm (2020)]

Rates:

Rates:

Input-output rule: Stochastic parity gate

Rates:

Input-output rule: Stochastic parity gate

 $p\left(y=1|x
ight)=\mathrm{sigmoid}\left(\eta R^{\phi}x_{1}R^{\phi}x_{2}
ight)$

Rates:

Input-output rule: Stochastic parity gate

 $p\left(y=1|x
ight)=\mathrm{sigmoid}\left(\eta R^{\phi}x_{1}R^{\phi}x_{2}
ight)$

Optimal performance: equilibrium vs nonequilibrium

Rates:

Input-output rule: Stochastic parity gate

 $p\left(y=1|x
ight)=\mathrm{sigmoid}\left(\eta R^{\phi}x_{1}R^{\phi}x_{2}
ight)$

Optimal performance: equilibrium vs nonequilibrium

Rates:

 $k_s^{(i)} \propto e^{-eta s_i (Ws+x)_i}$

Enhanced **expressivity** of **nonequilibrium steady state**

Quick aside: A tractable linear system

A multi-dimensional Ornstein-Uhlenbeck process:

 $\dot{s} = Ws + x + \sigma_s \xi$

A stochastic linear input-output rule:

 $y=w_0^Tx+\xi_y$

Quick aside: A tractable linear system

A multi-dimensional Ornstein-Uhlenbeck process:

 $\dot{s} = Ws + x + \sigma_s \xi$

A stochastic linear input-output rule:

 $y=w_0^Tx+\xi_y$

$$I(s,y) = \frac{1}{2}\log \det \left(W^{-1}C_x W^{-T} + C\right) + -\frac{1}{2}\log \det \left(C_s - C_{sy}C_y^{-1}C_{ys}\right) \text{with:} \\ WC + CW^T + \sigma_s^2 \mathcal{I} = 0 \end{cases} \qquad \sigma = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \mathcal{E}(\omega) \text{with:} \\ \mathcal{E}(\omega) = \frac{1}{2}\operatorname{Tr}\left[C(\omega)C^{-1}(-\omega) - \mathcal{I}\right]$$

Quick aside: A tractable linear system

A multi-dimensional Ornstein-Uhlenbeck process:

$$\dot{s} = Ws + x + \sigma_s \xi$$

A stochastic linear input-output rule:

$$y=w_0^Tx+\xi_y$$

$$egin{aligned} I\left(s,y
ight)=&rac{1}{2} ext{log}\det\left(W^{-1}C_{x}W^{-T}+C
ight)+\ &-rac{1}{2} ext{log}\det\left(C_{s}-C_{sy}C_{y}^{-1}C_{ys}
ight)\ & ext{ with:} \end{aligned}$$

$$WC+CW^T+\sigma_s^2\mathcal{I}=0$$
 .

$$\sigma = \int^{+\infty} \frac{d\omega}{2} \mathcal{E}(\omega)$$

$$=\int_{-\infty}$$
 $\frac{1}{2\pi}\mathcal{E}\left(\omega
ight)$

with:
$$\mathcal{E}\left(\omega
ight)=rac{1}{2}\mathrm{Tr}\left[C\left(\omega
ight)C^{-1}\left(-\omega
ight)-\mathcal{I}
ight.$$

MESO

Forward pass

MESO

Forward pass

Convergence of Gillespie dynamics to a Non Equilibrium Steady State

Forward pass

Convergence of **Gillespie** dynamics to a **Non Equilibrium Steady State**

MESO

ML: implicit layers [Bai et al, NeurIPS 2019]

Mean-field approx in kinetic Ising models [Aguilera et al, Nat Comm (2021)]

 $m_{t+1} = anh\left(Jm_t + h_t
ight)$

Forward pass

(Stochastic) Gradient Descent through automatic differentiation

MESO

Convergence of Gillespie dynamics to a Non Equilibrium Steady State ML: implicit layers [Bai et al, NeurIPS 2019]

Mean-field approx in kinetic Ising models [Aguilera et al, Nat Comm (2021)]

 $m_{t+1} = anh\left(Jm_t + h_t
ight)$

Forward pass

(Stochastic) Gradient Descent through automatic differentiation

Convergence of Gillespie dynamics to a Non Equilibrium Steady State

MESO

ML: implicit layers [Bai et al, NeurIPS 2019]

Mean-field approx in kinetic Ising models [Aguilera et al, Nat Comm (2021)]

 $m_{t+1} = anh\left(Jm_t + h_t
ight)$

(Stochastic) Gradient Descent via **Simultaneous Perturbation Stochastic Approximation** [Spaal IEEE Trans Aut Contr (1992)]

norm, activity regularization...

Mesoscopic equivalent to a Convolutional Neural Network

Mesoscopic equivalent to a Convolutional Neural Network

Mesoscopic equivalent to a Convolutional Neural Network

Random Input-Output

Conclusion

• Optimization of **task-relevant information** can lead to non-equilibrium systems independently of input information optimization

 Mesoscopic sytems can be *trained* to perform supervised learning problems at the stationary state

 Non-reciprocity of interaction enhances expressivity in computation at the NESS at the cost of positive entropy production

Perspectives

• From one-time statistics to time correlations at steady state.

• **Computation through transients**: non-stationary protocols → speed-accuracy-dissipation tradeoffs

- Stochastic networks with hidden units:
 - higher-order statistical interactions
 - stochastic attention mechanism?

THE END