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The elephant in the room of Machine Learning



The elephant in the room of Machine Learning
The electricity bill



What is the impact of energetic costs on 
performance and internal representations?

How can we construct cost-effective neural 
networks?

An energy-aware framework for Machine Learning
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Stochastic Themodynamics: fundamentals

Thermodynamics Stochastic Thermodynamics

Macroscopic observable on 
equilibrium ensembles

Fluctuating thermodynamic quantities 
(e.g. heat, work, entropy) on single 
trajectories of mesoscopic systems
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Continuous-time Markov Chain:

Entropy production:

Stochastic Themodynamics: fundamentals

Langevin eq:

Entropy production:

reservoir system

states of a coarse-grained system

 
Thermodynamic consistence: jump rates from 
interaction with a (many) reservoir(s);

 
Thermodynamic 
consistence: Einstein 
Relation

 



  

Stochastic Themodynamics: fundamentals
entropy production  irreversibility



  

Stochastic Themodynamics: fundamentals

detailed integral

Fluctuation Relations 

entropy production  irreversibility



  

Stochastic Themodynamics: fundamentals

detailed integral

Fluctuation Relations 

entropy production  irreversibility

Jarzinski equalityCrooks relation



  

Stochastic Themodynamics: fundamentals

detailed integral

Fluctuation Relations 

entropy production  irreversibility

[Collin et al, Nature 2005]
Jarzinski equalityCrooks relation
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Towards a ST of computation
Landauer Bound Logically irreversible manipulation → entropy increase in non-

information bearing degrees of 
freedom

Informally: Erasing a bit costs

Finite automata Transducers Turing Machines

An abstract formulation of dissipation in computing machines:
- generalization of Landauer Bound;
- “mismatch” cost;
- …
mostly agnostic to implementation.

...

David Wolpert
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Can we build a ST of neural networks?

an implementation-aware theory in mesoscopic, stochastic 
versions of neural networks

Not really! But...
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Supervised learning in mesoscopic networks

 

 

 

 

Caveat
Constraints on the connectivity should be taken into account in general for a 
consistent physical interpretation of our general parametrization.
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Computation-dissipation bottleneck

Information Bottleneck (Tishby et al)

Max information 
compression

Min loss of task-
relevant information

Supervised learning task: or

Construct optimal representations through dynamics:

Trade off performance and entropy production at steady state:

Max computational 
performance

Min entropy 
production at SS

e.g.

or
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A tractable 2d spin system

A plausible model for a sensory complex:

i) coupled chemoreceptors
ii) transcription regulation with cross-feedback
iii) ...

Rates:

Nonequilibrium steady states are optimal for 
at high correlation and small noise

[Ngampruetikorn et al, Nat Comm (2020)]
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A tractable 2d spin system

Input-output rule:
Stochastic parity gate

Optimal performance:
equilibrium vs nonequilibrium

Enhanced expressivity of
nonequilibrium steady state

Rates:



  

A tractable 2d spin system

Optimal Input 
Information

Optimal Task-relevant 
Information

Rates:
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Training mesoscopic networks

Average spin activity

Linear readout

Performance: - loss  function

Mean Square Error

Cross-entropy
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Training mesoscopic networks

(Stochastic) Gradient Descent 
through automatic differentiation

Forward pass Convergence of Gillespie 
dynamics to a Non Equilibrium 
Steady State

Entropy production 
regularization

NEURO MESO

(Stochastic) Gradient Descent via 
Simultaneous Perturbation 
Stochastic Approximation
[Spaal IEEE Trans Aut Contr 
(1992)]

L2/L1 regularization, batch/layer 
norm, activity regularization...

ML: implicit layers
[Bai et al, NeurIPS 
2019]

Mean-field approx in 
kinetic Ising models
[Aguilera et al, Nat 
Comm (2021)]

Online calculation at each spin flip
[Martynec et al, NJP (2020)]

Step 1: run two 
Gillespie sims with 
perturbed couplings

Step 2: compute 
gradient approximation
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Supervised learning in mesoscopic networks

Random Input-Output MNIST1D

Mesoscopic equivalent to a Convolutional Neural Network



  

Conclusion

● Optimization of task-relevant information can lead to 
non-equilibrium systems independently of input 
information optimization

● Mesoscopic sytems can be trained to perform 
supervised learning problems at the stationary state

● Non-reciprocity of interaction enhances expressivity in 
computation at the NESS at the cost of positive entropy 
production



  

Perspectives

● From one-time statistics to time correlations at 
steady state.

● Computation through transients: non-stationary 
protocols → speed-accuracy-dissipation tradeoffs

● Stochastic networks with hidden units:
- higher-order statistical interactions
- stochastic attention mechanism?



  

THE END
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