Loss is more

Exploring the weight space of a perceptron via enhanced sampling techniques

ECT* - BRIDGING SCALES 2024

UNIVERSITÀ DI TRENTO

margherita.mele@unitn.it - Margherita Mele

HOW DO NETWORKS LEARN?

Neural Networks identify pattern that we are not able to see

Neural Networks identify pattern that we are not able to see

Can we identify the key data traits networks learn from?

Neural Networks identify pattern that we are not able to see

Can we identify the key data traits networks learn from?

Describe the network configuration space while varying the input data structure

Inputs $\{x_i\}_1^P$ $\begin{bmatrix} 1,1,-1,\ldots,1,-1,-1 \end{bmatrix}$ $\begin{bmatrix} -1,1,1,\ldots,-1,1,-1 \end{bmatrix}$ \vdots $\begin{bmatrix} -1,-1,1,\ldots,-1,1,1 \end{bmatrix}$ Weight vector w [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}(w x_i)$

Weight vector w [-1,1, -1, ..., -1, -1, 1]Labels $\{y_i\}$ $y_i = \text{sgn}(w x_i)$

Inputs $\{x_i\}_1^P$ $\left(\begin{array}{c}1,1,-1,...,1,-1,-1\\-1,1,1,...,-1,1,-1\end{array}\right)$ $\left(\begin{array}{c}\vdots\\\vdots\\-1,-1,1,...,-1,1,1\end{array}\right)$

Weight vector w [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}(w x_i)$

Inputs $\{x_i\}_{1}^{P}$ $\left[1,1,-1,...,1,-1,-1]\right]$ $\left[-1,1,1,...,-1,1,-1]\right]$ $\left[-1,-1,1,...,-1,1,1]\right]$ Weight vector w [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}(w x_i)$

Inputs $\{x_i\}_1^P$ $\left[1,1,-1,...,1,-1,-1]$ $\left[-1,1,1,...,-1,1,-1]$ \vdots $\left[-1,-1,1,...,-1,1,1]$ Weight vector w [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}(w x_i)$

Weight vector w [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}(w x_i)$

Margherita Mele | <u>sbp.physics.unitn.it</u>

Energy

$$E_{w} = \sum_{i}^{P} \Theta \left(-y_{i} \cdot \operatorname{sgn} \left(w \, x_{i} \right) \right)$$

Entropy

$$S(\overline{E}) = \log\left(\sum_{\{w\}} \delta(E_w - \overline{E})\right)$$

Weight vector w [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}(w x_i)$

Margherita Mele | <u>sbp.physics.unitn.it</u>

Energy

$$E_{w} = \sum_{i}^{P} \Theta \left(-y_{i} \cdot \operatorname{sgn}\left(w \, x_{i}\right)\right)$$

Number of Errors

Entropy

$$S(\overline{E}) = \log\left(\sum_{\{w\}} \delta(E_w - \overline{E})\right)$$

Weight vector w [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}(w x_i)$

Margherita Mele | <u>sbp.physics.unitn.it</u>

Energy

$$E_{w} = \sum_{i}^{P} \Theta \left(-y_{i} \cdot \operatorname{sgn}\left(w \, x_{i}\right)\right)$$

Number of Errors

Entropy
$$S(\overline{E}) = \log\left(\sum_{\{w\}} \delta(E_w - \overline{E})\right)$$

Weight vector w [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}(w x_i)$

Margherita Mele | <u>sbp.physics.unitn.it</u>

Energy

$$E_{w} = \sum_{i}^{P} \Theta \left(-y_{i} \cdot \operatorname{sgn}\left(w \, x_{i}\right)\right)$$

Number of Errors

Entropy
$$S(\overline{E}) = \log\left(\sum_{\{w\}} \delta(E_w - \overline{E})\right)$$

N small (< 25)

Weight vector w [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}(w x_i)$

Weight vector w [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = sgn(w x_i)$

Margherita Mele | <u>sbp.physics.unitn.it</u>

N big (>30)

Weight vector *w* [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}(w x_i)$

Weight vector *w* [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}\left(w\,x_i\right)$

Margherita Mele | <u>sbp.physics.unitn.it</u>

• Huge configurational space $2^{30} = 1073741824$

Weight vector *w* [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}\left(w\,x_i\right)$

- Huge configurational space $2^{30} = 1073741824$
- Sampling algorithms get trapped in local minima

Weight vector *w* [-1,1,-1,...,-1,-1,1]Labels $\{y_i\}$ $y_i = \operatorname{sgn}\left(w\,x_i\right)$

- Huge configurational space $2^{30} = 1073741824$
- Sampling algorithms get trapped in local minima
- **Self-consistent entropy estimation**
- Uniform exploration of the energy spectrum

Weight vector *w* $\left[-1, 1, -1, \dots, -1, -1, 1\right]$ Labels $\{y_i\}$

$$y_i = \operatorname{sgn}\left(w\,x_i\right)$$

FNTROPY 9

Margherita Mele | <u>sbp.physics.unitn.it</u>

Energy

$$E_{w} = \sum_{i}^{P} \Theta \left(-y_{i} \cdot \operatorname{sgn} \left(w \, x_{i} \right) \right)$$

Number of Errors

Entropy
$$S(\overline{E}) = \log\left(\sum_{\{w\}} \delta(E_w - \overline{E})\right)$$

Random Data

Random Data

Random Data

Random vs Real

Random

Margherita Mele | <u>sbp.physics.unitn.it</u>

777)144777

MNIST

Random vs Real

Random

Margherita Mele | <u>sbp.physics.unitn.it</u>

5

Random vs Real

Margherita Mele | <u>sbp.physics.unitn.it</u>

$P_1 = P_0$ **39** 0.5 1.0 ENERGY/P

Margherita Mele | <u>sbp.physics.unitn.it</u>

0 vs 1

Back to random data

Back to random data

Small $\Delta \mu$

Back to random data

 $\Delta \mu \gg 1$

Margherita Mele | <u>sbp.physics.unitn.it</u>

Margherita Mele | <u>sbp.physics.unitn.it</u>

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- •
- •
- •
- •
- •
- •
- •

P1=1 P1=10 P1=20 P1=30 P1=40 P1=50 P1=50 P1=50 P1=50

 $\Delta \mu \simeq 1$

Margherita Mele | <u>sbp.physics.unitn.it</u>

N=784

N=784 Reduce Dimensions

Gaussian Clones

$$N(x,\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^k \det \Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right)$$

$$N(x,\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^k \det \Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right)$$

Margherita Mele | <u>sbp.physics.unitn.it</u>

$$N(x,\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^k \det \Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right)$$

Covariance - Σ

Margherita Mele | <u>sbp.physics.unitn.it</u>

$$N(x,\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^k \det \Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right)$$

Covariance - Σ

2ISO

diagonal matrix

 $v = \sqrt{v_1 \cdot v_2}$

GM

1	0.29	0.52	0.14	0.37	0.19	0.19	0.25
0.29	1	0.21	0.38	0.35	0.37	0.18	0.3
0.52	0.21	1	0.02	0.33	0.051	0.025	0.018
0.14	0.38	0.02	1	0.3	0.3	0.18	0.26
0.37	0.35	0.33	0.3	1	0.19	0.15	0.3
0.19	0.37	0.051	0.3	0.19	1	0.47	0.35
0.19	0.18	0.025	0.18	0.15	0.47	1	0.33
0.25	0.3	0.018	0.26	0.3	0.35	0.33	1

1 vs 🗱

Are there other parameters to control the peaks?

Are there other parameters to control the peaks?

Margherita Mele | <u>sbp.physics.unitn.it</u>

MISLABELLING

f = P/2

Are there other parameters to control the peaks?

Conclusions

Thermodynamic characterisation of the system at any energy level

Possibility to study real learning problems

Input-output correlation structure directly impacts the density of states of learning problems

Insight into the learning process due to a large pull of solutions and higher energy states

margherita.mele@unitn.it

Statistical and Biological Physics group University of Trento - TIFPA

Raffaello Potestio University of Trento - TIFPA

Roberto Menichetti University of Trento - TIFPA

Alessandro Ingrosso **International Centre of Theoretical Physics**

The Abdus Salam International Centre for Theoretical Physics

Wang-Landau algorithm

Proposal

 $g(w, \tilde{w})$

 $A(w, \tilde{w}) = \min \{ 1 \}$

$$, e^{S_{w}-S_{\tilde{w}}}\frac{g(\tilde{w},w)}{g(w,\tilde{w})} \bigg\}$$

$$S_w \leftarrow S_w + f \qquad H_w \leftarrow H_w -$$

+ 1

$$, e^{S_{w}-S_{\tilde{w}}}\frac{g(\tilde{w},w)}{g(w,\tilde{w})} \bigg\}$$

MNIST & FashionMNIST

P1>P2

2.5 63

PCA2

-20

15

2.5 57

-20

2.5 51

2.0

21

1.0

$$\frac{1}{\overline{z}^{k} \det \Sigma} \exp\left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1} (x-\mu)\right)$$

Multivariate Normal Distribution

$$N(x,\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^k \det \Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}\right)$$

 $(x-\mu)$

Multivariate Normal Distribution

$$N(x,\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^k \det \Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}\right)$$

Mean - μ

Multivariate Normal Distribution

$$N(x,\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^k \det \Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}\right)$$

Mean - μ

Covariance - Σ

1	0.16	0.79	-0.0019	0.09	-0.058	0.3	0.16
0.16	1	0.093	0.0067	-0.037	0.01	-0.025	-0.041
0.79	0.093	1	0.059	0.16	0.028	0.35	0.23
-0.0019	0.0067	0.059	1	0.48	0.14	0.16	0.35
0.09	-0.037	0.16	0.48	1	0.11	0.32	0.54
-0.058	0.01	0.028	0.14	0.11	1	-0.15	0.16
0.3	-0.025	0.35	0.16	0.32	-0.15	1	0.35
0.16	-0.041	0.23	0.35	0.54	0.16	0.35	1

1	0.02	0.33	0.051	0.025	0.018	0.0074	0.086
0.02	1	0.3	0.3	0.18	0.26	0.3	0.27
0.33	0.3	1	0.19	0.15	0.3	0.19	0.33
0.051	0.3	0.19	1	0.47	0.35	0.88	0.53
0.025	0.18	0.15	0.47	1	0.33	0.33	0.75
0.018	0.26	0.3	0.35	0.33	1	0.28	0.76
0.0074	0.3	0.19	0.88	0.33	0.28	1	0.4
0.086	0.27	0.33	0.53	0.75	0.76	0.4	1

Multivariate Normal Distribution

$$N(x,\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^k \det \Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right)$$

Mean - μ

1	0.16	0.79	-0.0019	0.09	-0.058	0.3	0.16
0.16	1	0.093	0.0067	-0.037	0.01	-0.025	-0.041
0.79	0.093	1	0.059	0.16	0.028	0.35	0.23
-0.0019	0.0067	0.059	1	0.48	0.14	0.16	0.35
0.09	-0.037	0.16	0.48	1	0.11	0.32	0.54
-0.058	0.01	0.028	0.14	0.11	1	-0.15	0.16
0.3	-0.025	0.35	0.16	0.32	-0.15	1	0.35
0.16	-0.041	0.23	0.35	0.54	0.16	0.35	1

1	0.02	0.33	0.051	0.025	0.018	0.0074	0.086
0.02	1	0.3	0.3	0.18	0.26	0.3	0.27
0.33	0.3	1	0.19	0.15	0.3	0.19	0.33
0.051	0.3	0.19	1	0.47	0.35	0.88	0.53
0.025	0.18	0.15	0.47	1	0.33	0.33	0.75
0.018	0.26	0.3	0.35	0.33	1	0.28	0.76
0.0074	0.3	0.19	0.88	0.33	0.28	1	0.4
0.086	0.27	0.33	0.53	0.75	0.76	0.4	1

GM clone

1	0.16	0.79	-0.0019	0.09	-0.058	0.3	0.16
0.16	1	0.093	0.0067	-0.037	0.01	-0.025	-0.04
0.79	0.093	1	0.059	0.16	0.028	0.35	0.23
-0.0019	0.0067	0.059	1	0.48	0.14	0.16	0.35
0.09	-0.037	0.16	0.48	1	0.11	0.32	0.54
-0.058	0.01	0.028	0.14	0.11	1	-0.15	0.16
0.3	-0.025	0.35	0.16	0.32	-0.15	1	0.35
0.16	-0.041	0.23	0.35	0.54	0.16	0.35	1

- Mean vector
- **Covariance matrix**

Multivariate Normal Distribution

$$-\exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right)$$

ISOGM clone

Mean vector

- Variance : diagonal matrix

Gaussian Clones - MNIST (P/N=0.1)

Gaussian Clones - MNIST (P/N=0.1)

Silico dataset

Class separation

Class separation

Small $\Delta \mu$

Class separation

Small $\Delta \mu$

Class separation

Small $\Delta \mu$

Misclassification

Class separation

Small $\Delta \mu$

Misclassification

f = 0

Class separation

Small $\Delta \mu$

Misclassification

f = 0

N:41 - P:30

N:41 - P:60

Convergence time

