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Protein-
small molecules
drug discovery

RNA
therapeutics

Finite-temperature
crystal polymorphs &

phase transitionsgithub.com/tiwarylab

My lab combines Molecular Simulations and generative AI 
to tackle problems of human health and energy relevance

guided by structure & dynamics

𝑘!""𝑘!#



AI can now be used to easily, routinely
predict structure

THANKS FOR YOUR ATTENTION,
THIS TALK IS NOW OVER
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Not quite …

AI can now be used to easily, routinely
predict structure



Somewhere on the order/disorder spectrum

Beyerle, Zou, Tsai, Tiwary 
PNAS 2023

Fluctuations between metastable states
described by few slow modes & timescale separation

No obvious timescale separation &
no dominant driving fluctuations

Life is not about a single structure but an ensemble of structures 
with right kind and magnitude of fluctuations



Proteins: Subtle fluctuations in state populations dictate disease phenotypes

Nussinov et al, Curr Op Struc Bio 2023



RNA: glassy landscapes and deep learning disaster

Known human RNA >> 
10 * Human Proteins

Number of RNA structures in PDB = 
1% of protein structures

Number of FDA approved drugs 
targeting human RNA =~ 2 
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(3) Long-short term memory networks for learning constrained non-Markovian dynamics
Tsai, Kuo, Tiwary Nature Comm. 2020; Nature Comm. 2022

All codes open-source @ github.com/tiwarylab

(1) Past-future information bottleneck 
Y. Wang, Ribeiro, Tiwary Nature Comm. 2019; Angew. Chem. 2022; ACS Central Science 2022

(2) Denoising diffusion probabilistic models for replica (no) exchange
Y. Wang, Herron, Tiwary PNAS 2022

My lab develops all-atom resolution Molecular Dynamics (MD) simulation methods
integrated with machine learning to model molecular diversity and dynamics
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Structure of this talk here onwards:

1. Motivating an ensemble view of molecular systems

2. A brief history of methods to estimate ratios of partition functions

3. Score-based models

4. Formulating Thermodynamic Maps 

5. Inferring the Ising phase transition with Thermodynamic Maps

6. Thermodynamic Map-accelerated Molecular Dynamics (TM-aMD) applied to RNAs

Wang…Tiwary, PNAS (2022): e2203656119
Herron…Tiwary, arXiv:2308.14885



For (bio)molecular systems an ensemble view is required

80% 10% 9% 0.4%

𝐱

𝑝(𝐱)

A single structure is insufficient. 
We need to consider the probability distribution over all structures.

Energy
𝑈 𝐱

Magnetization
𝑀 𝐱

Radius of Gyration
𝑅! 𝐱

NMR couplings
𝐽 𝐱𝐴 𝐱 =



Ensemble-weighted observable can be computed from 𝑝(𝐱)

𝐴 𝐱 % = ⟨𝐴(𝐱)|𝑝(𝐱)⟩

Energy
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This framework encompasses widely studied observables across scales:
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Ensemble-weighted observable can be computed from 𝑝(𝐱)

𝐴 𝐱 % = ⟨𝐴(𝐱)|𝑝(𝐱)⟩

Energy
𝑈 𝐱

This framework encompasses widely studied observables across scales:

Magnetization
𝑀 𝐱

Radius of Gyration
𝑅! 𝐱

NMR couplings
𝐽 𝐱

Three issues:

1. dim(𝐱) is often very large, so 𝑝(𝐱) is computationally intractable.

2. 𝑝 𝐱 is really 𝑝 𝐱 |𝑁, 𝑃, 𝑇 . Can we infer the dependence of 𝑝 𝐱 across 

thermodynamic ensembles in finite size cases?

3. Exploration of 𝑝 𝐱 is usually slow (i.e. MD/MC simulation)

𝐴 𝐱 =



1. dim(𝐱) is often very large, so 𝑝(𝐱) is computationally intractable.

Addressing Point 1:



Estimating the partition function 𝑍 𝛽 is sufficient to characterize 𝑝(𝐱)

𝐹 𝛽 = −𝛽"# log 𝑍(𝛽)𝑝 𝐱 =
𝑒"$%(𝐱)

𝑍(𝛽)
𝑍 𝛽 =;𝑒"$%(𝐱) d𝐱

If you are not convinced, moments (which uniquely describe a 
distribution) are closely related to the partition function:

𝜇# 𝛽 =;𝐱 𝑒"$%(𝐱) d𝐱 𝜇) 𝛽 =;𝐱) 𝑒"$%(𝐱) d𝐱 𝜇* 𝛽 =;𝐱* 𝑒"$%(𝐱) d𝐱

Mean Variance Skew
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2. Configuration space overlap 
increases convergence of 

estimates of 𝑍

𝐹+ 𝛽 − 𝐹, 𝛽 = log
𝑍,(𝛽)
𝑍+(𝛽)

Central ideas behind Free 
Energy Perturbation

1. We are usually interested in free energy 
differences (not absolute free energies) and 
therefore the ratio of partition functions.

Key observations:

A

B

J

(Neal, 1993)
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Explore 𝑝(𝐱) = 𝑒"-(𝐱)/𝑍 while only knowing the energy function 𝑓(𝐱)

(𝑍 is unknown)

A brief history of methods for estimating ratios of partition functions

Chapter 1: Markov-Chain Monte-Carlo (Teller, 1953)
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Explore 𝑝(𝐱) = 𝑒"-(𝐱)/𝑍 while only knowing the energy function 𝑓(𝐱)

(𝑍 is unknown)

A brief history of methods for estimating ratios of partition functions

Chapter 1: Markov-Chain Monte-Carlo (Teller, 1953)

1. Generate proposed move

2. Compute ratio of probabilities

3. Accept or reject proposal

𝐱 → 𝐱′

𝑝(𝐱)/𝑝(𝐱′) = 𝑒!(# 𝐱 !# 𝐱! ) = 𝑒!&#

If 𝑒!&# < 1, then 𝑝(accept) = 1

If 𝑒!&# > 1, then 𝑝(accept) = 𝑒!&#



Explore 𝑝(𝐱) = 𝑒"-(𝐱)/𝑍 while only knowing the energy function 𝑓(𝐱)

(𝑍 is unknown)

A brief history of methods for estimating ratios of partition functions

Chapter 1: Markov-Chain Monte-Carlo (Teller, 1953)

1. Generate proposed move

2. Compute ratio of probabilities

3. Accept or reject proposal

𝐱 → 𝐱′

𝑝(𝐱)/𝑝(𝐱′) = 𝑒!(# 𝐱 !# 𝐱! ) = 𝑒!&#

If 𝑒!&# < 1, then 𝑝(accept) = 1

If 𝑒!&# > 1, then 𝑝(accept) = 𝑒!&#

Detailed balance criteria
Ensures microscopic 

reversibility +
sampling equilibrium 
distribution of 𝑓(𝐱) 

Problem: Monte-Carlo sampling can be very slow to generate independent samples



Accelerate exploration of 𝑝(𝐱) by exploring different ensembles         
(e.g. a hotter 𝑝(𝐱) ∝ 𝑒"$% 𝐱 )

A brief history of methods for estimating ratios of partition functions

Chapter 2: Simulated Tempering (Parisi, 1992)
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Accelerate exploration of 𝑝(𝐱) by exploring different ensembles         
(e.g. a hotter 𝑝(𝐱) ∝ 𝑒"$% 𝐱 )

Core idea: Accelerate sampling by exploring a distributions other than the one of 
interest. In this case tempered distributions sharing 𝐻(𝐱).

Transitions between
ensembles must also 
satisfy the detailed 
balance condition

A brief history of methods for estimating ratios of partition functions
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Replica exchange is a simulated tempering protocol

Each rung on the temperature 
ladder is a tempered distribution 

𝐻 𝐱 is the MD force field

Use MBAR (Chodera, Shirts, 2008) 
to (approximately) recover 

. $+

.($,)
from  𝒵

Sugita, Okamoto. Chem. Phys. Lett.  (1999)



Accelerate exploration of 𝑝(𝐱) by interpolating between energy functions 
𝐻/ 𝐱 and 𝐻# 𝐱

• Independently discovered by Gelman and Meng (1998) who called their method Thermodynamic Integration and 
very closely related to Jarzynski (1997)

A brief history of methods for estimating ratios of partition functions

Chapter 3: Annealed Importance Sampling (Neal, 1998*) (aka “The missing link”)

Intermediate energies:
𝐻0 𝐱 = 𝜆𝐻/ 𝐱 + 1 − 𝜆 𝐻# 𝐱 .
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After lots of simulation, once all .+
.+/-

are estimated, samples from 𝐱 ∼ 𝒩(0, 𝛽"#)
can be used to compute free energy estimates for 𝑝/(𝐱) at virtually no cost

𝑝/ 𝐱 ∝ 𝑒"$%2(𝐱)

𝑝# 𝐱 ∝ 𝑒"$𝐱.
Slow to generate i.i.d samples L

Every sample is i.i.d.J



Score-based models extend Annealed Importance Sampling 
to cases where the energy function is unknown.

Instead of interpolating energy functions, 
interpolate the samples themselves.

Song, Yang, et al. "Score-based generative modeling through stochastic 
differential equations." arXiv:2011.13456 (2020).



Score-based models extend Annealed Importance Sampling 
to cases where the energy function is unknown.

Instead of interpolating energy functions, 
interpolate the samples themselves.

Generally take 𝐻# 𝐱 = 𝐱), and calculate how 

probability 𝑝0 𝐱 ∝ 𝑒"%3 𝐱 flows

𝑝0 𝐱 ∝ 𝑒"%3 𝐱 is then a diffusion process as 𝜆: 0 → 1

Target
(complicated)

Prior
(simple)

Picture from 
Mehdi, …,Tiwary Ann Rev Phys Chem vol 75

If 𝐱/ ∼ 𝑒"%2(𝐱) and 𝐱# ∼ 𝑒"%-(𝐱) , then 𝐱0 ∼ 𝑒"%3 𝐱

Song, Yang, et al. "Score-based generative modeling through stochastic 
differential equations." arXiv:2011.13456 (2020).



A remarkable property of diffusion processes 
makes score-based models possible

For any diffusion SDE of the form following 𝑝(𝐱, 𝑡)

𝑑𝐱 = −𝑓 𝐱, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤
Drift Noise

(Anderson, 1982)

Target
(complicated)

Prior
(simple)

Picture from 
Mehdi, …,Tiwary Ann Rev Phys Chem vol 75

Song, Yang, et al. "Score-based generative modeling through stochastic 
differential equations." arXiv:2011.13456 (2020).
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A remarkable property of diffusion processes 
makes score-based models possible

For any diffusion SDE of the form following 𝑝(𝐱, 𝑡)

𝑑𝐱 = −𝑓 𝐱, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝑤

There exists a reverse diffusion of the form: 

𝑑𝐱 = −[𝑓 𝐱, 𝑡 + 𝑔 𝑡 )∇𝐱 log 𝑝(𝐱, 𝑡)]𝑑𝑡 + 𝑔 𝑡 𝑑Q𝑤

Drift Noise

Drift Noise

(Anderson, 1982)

Define the score: s1 𝐱 = ∇𝐱 log 𝑝(𝐱, 𝑡)
The score is estimated by many evaluations of 

the forward SDE, and a Deep Neural Network is 
trained to estimate the score from 𝐱2

Target
(complicated)

Prior
(simple)

Picture from 
Mehdi, …,Tiwary Ann Rev Phys Chem vol 75

Song, Yang, et al. "Score-based generative modeling through stochastic 
differential equations." arXiv:2011.13456 (2020).



𝑞(𝐱(")) ⟶ 𝑞(𝐱($)) ⟶ ⋯⟶ 𝑞(𝐱(%))

∼ 𝑞(𝐱(")) ∼ 𝒩(𝐱($); 𝟎, 𝐈)

𝑝(𝐱(")) ⟵ ⋯⟵ 𝑝(𝐱($%&)) ⟵ 𝑝(𝐱($))

Diffusion

In reverse ( denoising )

∼ 𝑞(𝐱(%)) ∼ 𝑞(𝐱(&))
⋯

∼ 𝑞(𝐱('(%))

∼ 𝑝(𝐱("))

⋯
∼ 𝑝(𝐱(%)) ∼ 𝑝(𝐱(&)) ∼ 𝑝(𝐱('))∼ 𝑝(𝐱('(%))

𝑝(𝐱(<!=)|𝐱(<)) = 𝒩 𝐱(<!=); 𝐟>(𝐱(<)), 𝐟?(𝐱(<))Backward diffusion kernel 

Example: Denoising Diffusion Probabilistic Models (DDPMs)

Wang, Herron, Tiwary PNAS 2022

Easier to sample noise
But how to convert noise back to data?

Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885



Conditional Generation: right side of face having seen only left side



Conditional Generation: right side of face having seen only left side



Physically accessible 
torsion space

High T replicas

Low T 
replicas

Original motivation:
Conditional generation of face halves à

Conditional generation of molecular conformations

Torsion space

Wang…Tiwary, PNAS (2022): e2203656119
Herron…Tiwary, arXiv:2308.14885



Thermodynamic Maps: Extended-ensemble Free Energy Perturbation (FEP)
with score-based models

Samples from a complicated 
equilibrium distribution: (𝐱, 𝛽)

Samples from a simple
equilibrium distribution:  (𝐱′, 𝛽′)

Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885

𝑍 𝛽′ =
2𝜋
𝛽′



Thermodynamic Maps: Extended-ensemble Free Energy Perturbation (FEP)
with score-based models

Samples from a complicated 
equilibrium distribution: (𝐱, 𝛽)

Samples from a simple
equilibrium distribution:  (𝐱′, 𝛽′)

Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885

Forward diffusion:

Reverse diffusion:

is statistical temperature – same dimension as      and calculated from variances

𝑍 𝛽′ =
2𝜋
𝛽′



Thermodynamic Maps: Extended-ensemble FEP with score-based models

To generate samples at temperature 𝛽3, sample from the corresponding prior system
𝒩 0,𝛽3"#

where 𝛽3"#is some temperature of interest

Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885



Thermodynamic Maps: Extended-ensemble FEP with score-based models

Within the simple system, the dependence of the partition 
function on temperature is analytically tractable: 

𝑍 𝛽′ =
2𝜋
𝛽′

𝜇) 𝛽′ = 𝛽4"#

Addresses Point 2: Can we infer the dependence of 𝒑 𝒙 across thermodynamic ensembles?
Given samples x from p(x|β1), p(x|β2)… we can generate samples x at other p(x|β)

Can also do conditional on pressure, number, other constraints

has equilibrium distribution 𝒩(0, 𝛽/"#)



Thermodynamic Maps on Ising Model:
predict phase transitions without seeing any

Can one predict critical temperature, 
heat capacity, critical exponents with 
samples from 2 temperatures deep 
within paramagnetic and 
ferromagnetic phases? 

Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885

Low T High TCritical T



Thermodynamic Maps on Ising Model:
predict phase transitions without seeing any

Can one predict critical temperature, 
heat capacity, critical exponents with 
samples from 2 temperatures deep 
within paramagnetic and 
ferromagnetic phases? YES!

Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885

Low T High TCritical T



From spin glasses to RNAs

Ising Model Long range spin glasses

Stable configurations (Phases) stored in 
long-ranged heterogeneous 𝐽)*

Homogeneous short-ranged 𝐽)*
(2 phases)

Biopolymers

Monte Carlo

Hopfield networks is all you need

https://ml-jku.github.io/hopfield-layers/


p(x|Tcold) p(x|Tcool) p(x|Thot) p(x|Txhot)

p(x|Tany)
where Tany is any 

temperature, even < Tcold or > Txhot

Post-processing

💡 Unlike PES, FES(x) is 
temperature-dependent

(dimensionality of x >> 1 but <<N)

Take home so far: Thermodynamic Maps allows generating samples conditioned on some control 
thermodynamic parameter (so far, temperature)

Wang, Herron, Tiwary, PNAS (2022): e2203656119
Herron…Tiwary, arXiv:2308.14885



Ensemble-weighted observable can be computed from 𝑝(𝐱)

𝐴 𝐱 % = ⟨𝐴(𝐱)|𝑝(𝐱)⟩

Energy
𝑈 𝐱

This framework encompasses widely studied observables across scales:

Magnetization
𝑀 𝐱

Radius of Gyration
𝑅! 𝐱

NMR couplings
𝐽 𝐱

Three issues:

1. dim(𝐱) is often very large, so 𝑝(𝐱) is computationally intractable.

2. 𝑝 𝐱 is really 𝑝 𝐱 |𝑁, 𝑃, 𝑇 . Can we infer the dependence of 𝑝 𝐱 across 

thermodynamic ensembles in finite size cases?

3. Exploration of 𝒑 𝐱 is usually slow (i.e. MD/MC simulation)

𝐴 𝐱 =



Thermodynamic Map-accelerated Molecular Dynamics (TM-aMD)
Point 3: Exploration of 𝑝 𝒙 is usually slow 

Molecular Dynamics 
Simulation for different 
putative structures from 
Rosetta/AlphaFold2 at 

different

𝛽)



Thermodynamic Map-accelerated Molecular Dynamics (TM-aMD)

Molecular Dynamics 
Simulation for different 
putative structures from 
Rosetta/AlphaFold2 at 

different

𝛽)

{(𝐱), 𝜷))}

Train Thermodynamic 
Map on MD structures

Sample from 
Thermodynamic Map 

at each T

Cluster generated 
structures

Sample new seeds for
cluster-guided exploration

Point 3: Exploration of 𝑝 𝒙 is usually slow 



Results for chirally symmetric peptide

REMD performed with replicas at 400, 412,…500 K and 0% exchange (!!!)



Results for chirally symmetric peptide

Input to TM: 18 dihedrals
Noise to data projected along 2 dihedrals

REMD performed with replicas at 400, 412,…500 K and 0% exchange (!!!)



Results for chirally symmetric peptide

Input to TM: 18 dihedrals
Noise to data projected along 2 dihedrals

REMD performed with replicas at 400, 412,…500 K and 0% exchange (!!!)



Results for GCAA tetraloop

Temperature 
dependence of FE 

along PCA 
coordinates

Converged melting 
temperature

Stable 
Conformations
(NMR in blue)

Free Energy (FE) 
landscape

(NMR in green)



Temperature 
dependence of FE 

along PCA 
coordinates

Unconverged
melting 

temperature

Results for HIV-TAR RNA

Stable 
Conformations
(NMR in blue)

Free Energy (FE) 
landscape

(NMR in green)



Using bioinformatics we skip the initial folding problem

• GROMACS 2020
• DESRES force field Tan et. al., (2018)
• NPT ensemble

• 10 replicas
• 5us total simulation time (500 ns/ replica)
• Torsion angles recorded every 0.2ps

Watkin, Rangan, Das (2020)

ü No experimental structure 
for free Let-7f

ü No computational studies
ü Oncogenic

MALAT1 and Let-7f RNA
In-progress work joint with Schneekloth Lab @National Cancer Institute

RNA sequence and conformation specific drug discovery

Let-7f miRNA

Wang, Herron, Tiwary PNAS 2022 Herron, Mondal, Schneekloth, Tiwary arXiv



Wrapping up (1):
Proteins, RNA and crystals: Life on different energy landscapes can be sampled with different 

AI-stat mech integrated sampling schemes

github.com/tiwarylab



Wrapping up (2): Diffusion Models, with origins in Zwanzig and Jarzynski
are arguably the most extrapolative Generative AI models currently available

Stat Mech and Theoretical Chemistry have a lot to teach AI 
for practical, data-sparse applications to natural sciences



All about Monte Carlo

Simulated Tempering

Annealed Importance Sampling

Score-Based Generative modeling with Stochastic Differential Equations

Thermodynamic Maps
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