Inferring phase transitions and critical exponents from limited
observations with Thermodynamic Maps

Wang, Herron, Tiwary, PNAS (2022): 2203656119
Herron...Tiwary, arXiv:2308.14885

Pratyush Tiwary
University of Maryland

UNIVERSITY OF MARYLAND

‘DEPARTMENTOF & z INSTITUTE FOR
@ CHEMISTRY & BIOCHEMISTRY HEALTH COMPUTING

MPOWERING THE STATE




Postdocs

Eric Beyerle

Xinyu Gu

Postdog

Pakora the Dog

Our team

Undergrads Highschooler

F""""‘\

Michael Strobel Disha Sanwal
(CS+Statistics) (Chemistry+Appl Math)

PhD |
students

Dedi Wang Connor Zou

- i i Shams Mehdi
(Biophysics) 2 (Chemistry) (Biophysics)
Genentech —> Fraser Lab@UCSF

Lukas Herron Akashnathan Suemin Lee Vanessa Meraz
(Biophysics) Aranganathan (Biophysics) (Chemical
(Biophysics) Physics)

[ I’; it ‘
£

Alumni

Joao Ribeiro (Asst Prof @St Josephs
University NYC)

Zachary Smith (Senior Scientist
@Schrodinger)

Bodhi Vani (ML Scientist @Prescient
Design)

Yihang Wang (Schmidt Al in Science
Postdoc @UChicago)

Sun-Ting Tsai (Postdoc @UMichigan)

Luke Evans (Postdoc @Flatiron)

Anjali Verma  Richard John Venkata Adury
(Biophysics) (Physics) (Chemical
Physics)



Sand ® support

U.S. DEPARTMENT OF

eENERGY ACSH).PRF ALFRED P. SLOAN
Office of Science \\‘ ,// FONnParly)
\ / Drivan by the promise of great ideas
S 2.

NIGMS

NOT_TITND
‘\._)M BI N E PARTNERSHIP @ SChI‘Odinger

for Integrative Car

Current sources of financial support:

NSF CAREER CHE-2044165 (CTMC, 2021-2026)
NIH MIRA R35GM142719 (NIGMS, 2021-2026)
DOE BES SC0021009 (CPIMS, 2020-2026)
Sloan Research Fellowship (2022-2024)
NCI-UMD partnership (2018-2025)
UM-IHC start-up grants
Millard and Lee Alexander Professorship funds

COl: PT. is on Scientific Advisory Board of Schrodinger



My lab combines Molecular Simulations and generative Al
to tackle problems of human health and energy relevance
guided by structure & dynamics

Protein-
small molecules

drug discovery Finite-temperature
RNA crystal polymorphs &

github.com/tiwarylab therapeutics phase transitions



Al can now be used to easily, routinely
predict structure
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THIS TALK IS NOW OVER

AlphaFold: a solution to a 50-
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Al can now be used to easily, routinely
predict structure
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Life is not about a single structure but an ensemble of structures

with right kind and magnitude of fluctuations
Proteins RNAs

Order/Disorder
spectrum

D.J. Wales, Ann. Rev. Phys. Chem. (2017).
Exploring Energy Landscapes

K. Dill, J. McCallum, Science (2012).
The Protein-Folding problem, 50 years on

No obvious timescale separation &

Fluctuations between metastable states
no dominant driving fluctuations

described by few slow modes & timescale separation

Somewhere on the order/disorder spectrum

Transition

Basin / states

Potential energy

Beyerle, Zou, Tsai, Tiwary
Ideal glass PNAS 2023

Coordinates
Debenedetti, Stillinger, Nature (2001).
Supercooled Liquids & the Glass Transition



Proteins: Subtle fluctuations in state populations dictate disease phenotypes

Strong hotspot Weak/moderate
mutation mutation

Wild type

Inactive \J"
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State 2
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l lConformation l
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Wild-type phenotype Disease phenotype Disease phenotype
Healthy cells Cancer NDDs

Nussinov et al, Curr Op Struc Bio 2023



RNA: glassy landscapes and deep learning disaster

PDB Statistics: Overall Growth of Released Structures Per Year

Year Total Number of Entries Number of Structures
Available Released Annually
2020 172934 14021

PDB Statistics: RNA-only Structures Released Per Year

Year Total Number of Entries Number of Structures
Available Released Annually
2020 1523 102

Known human RNA >>
10 * Human Proteins
Number of RNA structures in PDB =
1% of protein structures

Number of FDA approved drugs
targeting human RNA =~ 2



RNA: glassy landscapes and deep learning disaster
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PDB Statistics: Overall Growth of Released Structures Per Year RESEARCH ARTICLE ergrens WILEY
Year Total Number of Entries Number of Structures
Available Released Annually Assessment of three-dimensional RNA structure prediction in

CASP15

2020 172934 14021

PDB Statistics: RNA-only Structures Released Per Year Rhiju Das’*?© | Rachael C. Kretsch®® | Adam J. Simpkin®© |
Thomas Mulvaney > | Phillip Pham? | Ramya Rangan? | FanBu”®

Year Total Number of Entries Number of Structures Ronan M. Keegan4’9 | Maya TOPf5’6 | Daniel J. Rigden4 |

Available Released Annually Zhichao Miao 1%** | Eric Westhof
2020 1523 102 Abstract

The prediction of RNA three-dimensional structures remains an unsolved problem.
Here, we report assessments of RNA structure predictions in CASP15, the first CASP

exercise that involved RNA structure modeling. Forty-two predictor groups submitted

Known human RNA >>

10 * Human Proteins models for at least one of twelve RNA-containing targets. These models were evalu-
Number of RNA structures in PDB = ated by the RNA-Puzzles organizers and, separately, by a CASP-recruited team using
1% of protein structures metrics (GDT, IDDT) and approaches (Z-score rankings) initially developed for assess-

ment of proteins and generalized here for RNA assessment. The two assessments inde-
pendently ranked the same predictor groups as first (Alchemy_RNA2), second (Chen),
Number Of FDA apprOVEd drugs and third (RNAPolis and GeneSilico, tied); predictions from deep learning approaches
targeting human RNA =~ 2 were significantly worse than these top ranked groups, which did not use deep learn-
ing. Further analyses based on direct comparison of predicted models to cryogenic

electron microscopy (cryo-EM) maps and x-ray diffraction data support these rankings.

With the exception of two RNA-protein complexes, models submitted by CASP15



My lab develops all-atom resolution Molecular Dynamics (MD) simulation methods
integrated with machine learning to model molecular diversity and dynamics

X € Rm@>@ X € Rlow@v<@ e RAgh/low

(1) Past-future information bottleneck
Y. Wang, Ribeiro, Tiwary Nature Comm. 2019; Angew. Chem. 2022; ACS Central Science 2022

~ p(s, ty) ~ p(s, 1) ~ p(s, 1) ~ p(s fy—1) ~ N (s;0,1)
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(2) Den0|5|ng diffusion probabilistic models for replica (no) exchange
Y. Wang, Herron, Tiwary PNAS 2022
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(3) Long-short term memory networks for learning constrained non-Markovian dynamics
Tsai, Kuo, Tiwary Nature Comm. 2020; Nature Comm. 2022

All codes open-source @ github.com/tiwarylab
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Today’s talk will focus on Thermodynamic Maps approach
for sampling RNA type energy landscapes

Proteins RNAs

Order/Disorder
spectrum

Wang, Herron, Tiwary, PNAS 2022

5
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D.J. Wales, Ann. Rev. Phys. Chem. (2017).
Exploring Energy Landscapes
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K. Dill, J. McCallum, Science (2012).
The Protein-Folding problem, 50 years on

No obvious timescale separation &

Fluctuations between metastable states
no dominant driving fluctuations

described by few slow modes & timescale separation

Somewhere on the order/disorder spectrum

Transition

Basin states
\
Beyerle, Zou, Tsai, Tiwary

Ideal glass PNAS 2023

Potential energy

Coordinates
Debenedetti, Stillinger, Nature (2001).
Supercooled Liquids & the Glass Transition



Today’s talk will focus on Thermodynamic Maps approach
for sampling RNA type energy landscapes
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D.J. Wales, Ann. Rev. Phys. Chem. (2017).
Exploring Energy Landscapes

No obvious timescale separation &
no dominant driving fluctuations
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Structure of this talk here onwards:

Motivating an ensemble view of molecular systems

A brief history of methods to estimate ratios of partition functions
Score-based models

Formulating Thermodynamic Maps

Inferring the Ising phase transition with Thermodynamic Maps

Thermodynamic Map-accelerated Molecular Dynamics (TM-aMD) applied to RNAs

Wang...Tiwary, PNAS (2022): e2203656119
Herron...Tiwary, arXiv:2308.14885




For (bio)molecular systems an ensemble view is required

A single structure is insufficient.
We need to consider the probability distribution over all structures.

e Y

b

X @ '
p(X) 80% 10% 9% 0.4%
Energy Magnetization Radius of Gyration NMR couplings

AX) = U M(x) Ry (x) J(x)



Ensemble-weighted observable can be computed from p(x)
(A(x))p = (AX)[p(x))

This framework encompasses widely studied observables across scales:

Energy Magnetization Radius of Gyration NMR couplings
AX)= U M(x) Ry (x) J (%)
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Ensemble-weighted observable can be computed from p(x)
(A(x))p = (AX)[p(x))

This framework encompasses widely studied observables across scales:

Energy Magnetization Radius of Gyration NMR couplings
AX)= U M(x) Ry (x) J (%)

Three issues:

1. dim(X) is often very large, so p(X) is computationally intractable.
2. p(x)isreally p(x|N,P,T). Can we infer the dependence of p(x) across
thermodynamic ensembles in finite size cases?

3. Exploration of p(x) is usually slow (i.e. MD/MC simulation)



Addressing Point 1:

1. dim(Xx) is often very large, so p(X) is computationally intractable.



Estimating the partition function Z(f) is sufficient to characterize p(x)

—BH(X)
P00 =S @)= [[[ e ax r) = g logzep)

If you are not convinced, moments (which uniquely describe a
distribution) are closely related to the partition function:

m® = [[[xe P @ax  wE) = [[[ et @ax p@) = ||| % e ax

Mean Variance Skew



Estimating the partition function Z([3) is sufficient to characterize p(x)

—BPH(X)
P00 =S @)= [[[ e ax rg) = —piogzep)

Key observations:

1. We are usually interested in free energy 2. Configuration space overlap
differences (not absolute free energies) and increases convergence of
therefore the ratio of partition functions. estimates of Z
Zg(B) (Neal, 1993)
FA(B) ~ Fa(B) = log "5 3
A / . —— K
Central ideas behind Free VI I N //
Energy Perturbation == /
B |2 Ty
\\¥/// \\




Estimating the partition function Z([3) is sufficient to characterize p(x)

—BPH(X)
P00 =S @)= [[[ e ax rg) = —piogzep)

Key observations:

1. We are usually interested in free energy 2. Configuration space overlap
differences (not absolute free energies) and increases convergence of
therefore the ratio of partition functions. estimates of Z

(Neal, 1993)

Zp(p)
Z4(B) __—

Central ideas behind Free
Energy Perturbation

F4(B) — Fg(B) = log

N
)

= /

/

THE JOURNAL OF CHEMICAL PHYSI [oF] VOLUME 22, NUMBER 8 AUGUST, 1954 \
High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases*

Roeert W. ZwaNzIG

Sterling Chemistry Laboratory,t Yale University, New Haven, Connecticut B / \

(Received March 2, 1954) \ / \

A theoretical study is made of the equations of state of argon and nitrogen, at high temperatures and \ / \

densities. The intermolecular potential used is of the Lennard-Jones form, with an adjustable rigid sphere | —
cutoff. A perturbation theory is developed, by which the thermodynamic properties of one system may be
related to those of a slightly different system and to the difference in the intermolecular potentials of the two
systems. In this article, the unperturbed system is a rigid sphere fluid, and the Lennard-Jones potential is
the perturbation. The results are in fair agreement with experiment, and also lead to an experimental test of

the theoretical rigid sphere equation of state.




A brief history of methods for estimating ratios of partition functions

Chapter 1: Markov-Chain Monte-Carlo (Teller, 1953)

Explore p(x) = e 7™ /Z while only knowing the energy function f(x)

(Z is unknown)
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A brief history of methods for estimating ratios of partition functions

Chapter 1: Markov-Chain Monte-Carlo (Teller, 1953)

Explore p(x) = e 7™ /Z while only knowing the energy function f(x)

(Z is unknown)

1. Generate proposed move X > X

2. Compute ratio of probabilities ~ p(X)/p(x") = e F@-F(x)) = o=4f




A brief history of methods for estimating ratios of partition functions

Chapter 1: Markov-Chain Monte-Carlo (Teller, 1953)

Explore p(x) = e 7™ /Z while only knowing the energy function f(x)

(Z is unknown)

1. Generate proposed move X > X

2. Compute ratio of probabilities ~ p(X)/p(x") = e F@-F(x)) = o=4f

If e < 1, then p(accept) = 1

3. Accept or reject proposal
If e~ > 1, then p(accept) = e~ 4/




A brief history of methods for estimating ratios of partition functions

Chapter 1: Markov-Chain Monte-Carlo (Teller, 1953)

Explore p(x) = e 7™ /Z while only knowing the energy function f(x)

(Z is unknown)

1. Generate proposed move

X—X

2. Compute ratio of probabilities p(X)/p(X) = e~ FO-f(x')) = g=Af

3. Accept or reject proposal

If e < 1, then p(accept) = 1
If e~/ > 1, then p(accept) = e™2/

V'q

Ve

Problem: Monte-Carlo sampling can be very slow to generate independent samples

Detailed balance criteria

Ensures microscopic
reversibility +
sampling equilibrium
distribution of f(x)



A brief history of methods for estimating ratios of partition functions

Chapter 2: Simulated Tempering (Parisi, 1992)

Accelerate exploration of p(x) by exploring different ensembles
(e.g. a hotter p(x) «x e~ FHRX))
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Chapter 2: Simulated Tempering (Parisi, 1992)

Accelerate exploration of p(x) by exploring different ensembles
(e.g. a hotter p(x) «x e~ FHRX))

1. Generate proposed (x,8) - (¥, B")
move




A brief history of methods for estimating ratios of partition functions

Chapter 2: Simulated Tempering (Parisi, 1992)

Accelerate exploration of p(x) by exploring different ensembles
(e.g. a hotter p(x) «x e~ FHRX))

Partition function of the
1. Generate proposed (x,8) = (X, 8) extended ensemble vanishes

move / Z=1_[Z(,3i)

2. Compute ratio of p()flﬁ? — o~ (B-B")H®-H(x")) — p,—AHAB
probabilities p(x'|B")




A brief history of methods for estimating ratios of partition functions

Chapter 2: Simulated Tempering (Parisi, 1992)

Accelerate exploration of p(x) by exploring different ensembles
(e.g. a hotter p(x) «x e~ FHRX))

Partition function of the

1. Generate proposed (x,8) = (X, 8) extended ensemble vanishes

move

/ z=| |z
2. Compute ratio of p()flﬁ? — o~ (B-B")H®-H(x")) — p,—AHAB
probabilities p(x'|B")

Transitions between
. ensembles must also

If e=AHAB > 1, then p(accept) = e~AHAB satisfy the detailed
balance condition

3. Accept or reject If e 2148 < 1, then p(accept) = 1
proposal




A brief history of methods for estimating ratios of partition functions

Chapter 2: Simulated Tempering (Parisi, 1992)

Accelerate exploration of p(x) by exploring different ensembles
(e.g. a hotter p(x) «x e~ FHRX))

1. Generate proposed
move

2. Compute ratio of p&x1p) — o~ (B-B")H®-H(x")) — p,—AHAB

probabilities

3. Accept or reject
proposal

(x,8) = (x,B)

p(X'|B’)
If e=AHAB < 1, then p(accept) = 1

If e"2HAE > 1, then p(accept) = e ~2HAB

1%

<

Partition function of the
extended ensemble vanishes

z=| |z

Transitions between
ensembles must also
satisfy the detailed
balance condition

Core idea: Accelerate sampling by exploring a distributions other than the one of
interest. In this case tempered distributions sharing H (x).




Temperature

Replica exchange is a simulated tempering protocol

Replica 6 ——15_ 3 Ts Ts Ts \ Each rung on the temperature
>< ladder is a tempered distribution
T T T T
Replica 5 2 Accepted —> : Rejected :
T T T T i i
Replica 4 1 * e fceptes— 0y H(x) is the MD force field
. T3 >< T3 T, Te .
Replica 3 ————— P Rejected —— > — % Accepted —— P> Use MBAR (Chodera, Shirts, 2008)
. . . . to (approximately) recover
Replica 2 —2) —1> Accepted43) —3>
e 2()
Replica 1 T T, T, T, from Z
eplica l ———p Accepted —> —>> Rejected —> Z(B])
>

Simulation time

Sugita, Okamoto. Chem. Phys. Lett. (1999)



A brief history of methods for estimating ratios of partition functions

Chapter 3: Annealed Importance Sampling (Neal, 1998%*) (aka “The missing link”)

Accelerate exploration of p(X) by interpolating between energy functions
H,(x) and H{(x)

Intermediate energies:
Hy(x) = AHy(x) + (1 — D H; (%).

* Independently discovered by Gelman and Meng (1998) who called their method Thermodynamic Integration and
very closely related to Jarzynski (1997)



A brief history of methods for estimating ratios of partition functions

Chapter 3: Annealed Importance Sampling (Neal, 1998%*) (aka “The missing link”)

Accelerate exploration of p(X) by interpolating between energy functions
H,(x) and H{(x)

Intermediate energies:
Hy(x) = AHy(x) + (1 — D H; (%).

Zo _ZoZa,  Zai o Zapa This is the first situation where taking advantage

Z4 - Zy, Zy, " Zy A of a prior distribution for H; (X) seems useful.

i+1

* Independently discovered by Gelman and Meng (1998) who called their method Thermodynamic Integration and
very closely related to Jarzynski (1997)



A brief history of methods for estimating ratios of partition functions

Chapter 3: Annealed Importance Sampling (Neal, 1998%*) (aka “The missing link”)

Zo _ZoZa,  Zai o Zapa This is the first situation where taking advantage

Z, Zy, Zy, "Iy, Zy of a prior distribution for H; (X) seems useful.
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Chapter 3: Annealed Importance Sampling (Neal, 1998%*) (aka “The missing link”)

Zo ZoZy, Ly, Zp,, This is the first situation where taking advantage
Z B Zy, Zy, "Iy, Zy of a prior distribution for H; (X) seems useful.

Let H,(x) = MD force field
H,(x) = x?
Hy,(x) = AHy(x) + (1 — ) H,(x).
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Chapter 3: Annealed Importance Sampling (Neal, 1998%*) (aka “The missing link”)

Zo _ZoZa,  Zai o Zapa This is the first situation where taking advantage

Z, Zy, Zy, "Iy, Zy of a prior distribution for H,(X) seems useful.

Let H,(x) = MD force field
H,(x) = x?
Hy,(x) = AHy(x) + (1 — ) H,(x).

po(X) o e FHo(X) «— Slow to generate i.i.d samples ®

pq(X) & e~ BX* <— Every sample s i.i.d.



A brief history of methods for estimating ratios of partition functions

Chapter 3: Annealed Importance Sampling (Neal, 1998%*) (aka “The missing link”)

Zo _ZoZa,  Zai o Zapa This is the first situation where taking advantage

Z, Zy, Zy, "Iy, Zy of a prior distribution for H,(X) seems useful.

Let H,(x) = MD force field
H,(x) = x?
Hy(x) = AHy(x) + (1 — DH; (%)

po(X) o e FHo(X) «— Slow to generate i.i.d samples ®

pq(X) & e~ BX* <— Every sample s i.i.d.

. . Z; : _
After lots of simulation, once aII—Z “ are estimated, samples fromx ~ V(0,87 1)
i+1
can be used to compute free energy estimates for py(X) at virtually no cost




Score-based models extend Annealed Importance Sampling
to cases where the energy function is unknown.

Instead of interpolating energy functions,
interpolate the samples themselves.

Song, Yang, et al. "Score-based generative modeling through stochastic
differential equations." arXiv:2011.13456 (2020).



Target
Score-based models extend Annealed Importance Sampling (complicated)

to cases where the energy function is unknown. p(x)

Instead of interpolating energy functions,
interpolate the samples themselves.

SBM

If XO ~ e_HO(X) and Xl ~ e_Hl(x) , then xﬂ, ~ e—H/’[(X)

Generally take H;(x) = x?, and calculate how

probability p; (x) « e 72X flows

N(0,1)
Prior
(simple)

p,(x) < e7H2X) js then a diffusion process as 1: 0 — 1

Song, Yang, et al. "Score-based generative modeling through stochastic Picture from
differential equations." arXiv:2011.13456 (2020). Mehdi, ... Tiwary Ann Rev Phys Chem vol 75



A remarkable property of diffusion processes Target
makes score-based models possible (complicated)

(Anderson, 1982)

p(x)

For any diffusion SDE of the form following p(X,t)
dx = —f(x,t)dt + g(t)dw

Drift Noise Sa
l Diffusion \ '\
N(0,1)
Prior
(simple)
Song, Yang, et al. "Score-based generative modeling through stochastic Picture from

differential equations." arXiv:2011.13456 (2020). Mehdi, . Tiwary Ann Rev Phys Chem vol 75



A remarkable property of diffusion processes Target
makes score-based models possible (complicated)

(Anderson, 1982)

p(x)

For any diffusion SDE of the form following p(X,t)
dx = —f(x,t)dt + g(t)dw

Drift Noise SBM

There exists a reverse diffusion of the form:

dx = —[f(x,t) + g(t)*Vylogp(x, t)]|dt + g(t)dw

Drift Noise
N(0,T)
Prior
(simple)
Song, Yang, et al. "Score-based generative modeling through stochastic Picture from

differential equations." arXiv:2011.13456 (2020). Mehdi, ... Tiwary Ann Rev Phys Chem vol 75



A remarkable property of diffusion processes Target
makes score-based models possible (complicated)

(Anderson, 1982)

p(x)

For any diffusion SDE of the form following p(X,t)

dx = —f(x,t)dt +
Drift SBM

There exists a reverse diffusion of the form: . 4 € Difuson’y

dx = —[f(x,t) + g(t)*Vylogp(x, t)]dt +
Drift
Define the score: sg(x) = V, logp(x, t)

The score is estimated by many evaluations of
the forward SDE, and a Deep Neural Network is

N(0,T)
trained to estimate the score from x; Prior

(simple)

Song, Yang, et al. "Score-based generative modeling through stochastic Picture from
differential equations." arXiv:2011.13456 (2020). Mehdi, ... Tiwary Ann Rev Phys Chem vol 75



Example: Denoising Diffusion Probabilistic Models (DDPMs)

Diffusion

q(X(O)) s q(x(l)) e — q(X(T))

~ q(x(T—l)) ~ N(x(t); 0,1)

Easier to sample noise
But how to convert noise back to data?

In reverse ( denoising )

p(x(0) e — pT™D) — px™)

~ p(x®) ~ p(x®) ~ p(x®) ~pxT™D) ~ p(xM)
Backward diffusion kernel p(x(ED|x®) = N(X(t_l); f, (x)), fy (X(t)))

Wang, Herron, Tiwary PNAS 2022 Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885



Conditional Generation: right side of face having seen only left side




Conditional Generation: right side of face having seen only left side




Original motivation:
Conditional generation of face halves 2
Conditional generation of molecular conformations

Torsion space -_——- T == - o
- Physically accessible

torsion space

\

Wang...Tiwary, PNAS (2022): e2203656119
Herron...Tiwary, arXiv:2308.14885




Thermodynamic Maps: Extended-ensemble Free Energy Perturbation (FEP)
with score-based models

Samples from a complicated Samples from a simple
equilibrium distribution: (x, 8) equilibrium distribution: (X, 8")
;-?';-“ Diffusion
: Process ™

B B

g9,
A
;«,ié
1
")

p(xﬂ /B) x e _B/X/Z

q(x',3") xe

2(8) = | =X
- |z

Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885



Thermodynamic Maps: Extended-ensemble Free Energy Perturbation (FEP)
with score-based models

Samples from a complicated Samples from a simple
equilibrium distribution: (x, 8) equilibrium distribution: (X, 8")

Diffusion

Process ™

\ S M@ s

q(xl, _,3/) X e—,@/xxz
e dx . ) ] -
Forward diffusion: <d6—1) = —§a(t) (g—l) &+ o ( [130 ) o _j;

Reverse diffusion: (dg}il) _ —%a(t) Kﬁ’fl) 4 (s:&g)i’lf)t))] dt + \/@( ?o_l> dw

B~ 1 is statistical temperature — same dimension as X and calculated from variances

Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885



Thermodynamic Maps: Extended-ensemble FEP with score-based models
d 1 i —1
(dﬂ’fl) = —5o(!) Kﬁ’fl) 13 (598&(3)51 )t)>] dt + /o (t) (\/fo ) dw

To generate samples at temperature 5., sample from the corresponding prior system

N(O,8:1)
where B tis some temperature of interest

—,;‘%X’Z

q(x',B.) x e

Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885



Thermodynamic Maps: Extended-ensemble FEP with score-based models

Ensemble-weighted observable can be computed from p(x)
(AX))p = (A [p(X))

This framework encompasses widely studied observables across scales:

Radius of Gyration
Ry (%)

NMR couplings
J(x)

Energy
Ux)

Magnetization

AX) = M(x)

Three issues:

1. dim(x) is often very large, so p(x) is computationally intractable.
2. p(x)isreallyp(x|N,P,T).Can we infer the dependence of p(X) across
thermodynamic ensembles in finite size cases?

3. Exploration of p(x) is usually slow (i.e. MD/MC simulation)

Within the simple system, the dependence of the partition
function on temperature is analytically tractable:

Z(B) =

\

w(B) =p"1

(dg}il) - _%U(t) (g}il) dt ++/a(t) (V '?0_1) dw  has equilibrium distribution ~ (0, 85 1)

Addresses Point 2: Can we infer the dependence of p(x) across thermodynamic ensembles?
Given samples x from p(x|[B1), p(x|B5)... we can generate samples x at other p(x|[3)

Can also do conditional on pressure, number, other constraints



Thermodynamic Maps on Ising Model.:
predict phase transitions without seeing any

Critical T

Can one predict critical temperature,
heat capacity, critical exponents with
samples from 2 temperatures deep
within paramagnetic and
ferromagnetic phases?

M~ |7 and C~|r|”* where 7=

Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885



Thermodynamic Maps on Ising Model.:

predict phase transitions without seeing any
W

Can one predict critical temperature,

heat capacity, critical exponents with

samples from 2 temperatures deep

within paramagnetic and

ferromagnetic phases? YES!

T -1,

M~ |7 and C~|r|”* where 7= 7

Critical T

T
A 10+ | Buc ~ 0.149 + 0.004 S i aye ~ 0.338 +0.050
1 Bras &~ 0.178 + 0.012 10 apar = 0.236 4 0.061
]
0.8
= 081
s K,
€ 0.6 - o 1 Monte-Carlo (MC)
2 J i 2 0.6 1 = Thermodynamic Map (TM)
N I § : Y Training Data
% 0.4 1 : S 0.4 ‘ : o Critical Exp. Calculation
= | g |
T oA
0.2 : 0.2 I
| | &
| 0.0 - mem— I
0.0 ' 1
T T T T T T T T T T
-1.0 -05 0.0 0.5 1.0 -10 -05 00 0.5 1.0
T T

FIG. 2. Inferring the phase transition of the 2D Ising model from limited sampling. A The magnetization
is plotted for samples of a 32x 32 square Ising model generated through MC sampling (orange) and the thermodynamic
map (blue). The thermodynamic map predicts change in magnetization at 7. when trained on samples generated
at T = 1.5 and T = 4 (red stars). B The heat capacity of samples generated from MC sampling (orange) and the
thermodynamic map (blue) is plotted. The thermodynamic map correctly infers the divergence in the heat capacity,
numerically computed for the red dots, when trained on the same samples as panel A (red stars).

Herron, Mondal, Schneekloth, Tiwary arXiv:2308.14885



From spin glasses to RNAs

Ising Model Long range spin glasses Biopolymers

ﬂs e [N

@3‘%

Homogeneous short-ranged Jij
(2 phases) \ /

Stable configurations (Phases) stored in
long-ranged heterogeneous J;;

Hopfield networks is all you need



https://ml-jku.github.io/hopfield-layers/

Take home so far: Thermodynamic Maps allows generating samples conditioned on some control
thermodynamic parameter (so far, temperature)

7 px|Tyy)

Post-processing
where T, is any
temperature, even < T 4 0r > T ;¢

v Unlike PES, FES(x) is

temperature-dependent
(dimensionality of x >> 1 but <<N)

P35 PXITa)  PXHhor) (X Tynot)
NIRRT ALTALLS

cool heat extreme heat
cold

Wang, Herron, Tiwary, PNAS (2022): e2203656119
Herron...Tiwary, arXiv:2308.14885



Ensemble-weighted observable can be computed from p(x)
(A(x))p = (AX)[p(x))

This framework encompasses widely studied observables across scales:

Energy Magnetization Radius of Gyration NMR couplings
AX)= U M(x) Ry (x) J (%)

Three issues:

1. dim(X) is often very large, so p(X) is computationally intractable.
2. p(x)isreally p(x|N,P,T). Can we infer the dependence of p(x) across
thermodynamic ensembles in finite size cases?

3. Exploration of p(x) is usually slow (i.e. MD/MC simulation)



Thermodynamic Map-accelerated Molecular Dynamics (TM-aMD)
Point 3: Exploration of p(x) is usually slow

M
Molecular Dynamics
Simulation for different
putative structures from
Rosetta/AlphaFold2 at
different

{B:}



Thermodynamic Map-accelerated Molecular Dynamics (TM-aMD)
Point 3: Exploration of p(x) is usually slow

AG at 310K (kcal/mol)
0 1 2

n 3
Molecular Dynamics Sample new seeds for Cluster generated
Simulation for different cluster-guided exploration 2 structures
putative structures from 6
Rosetta/AlphaFold2 at
different <
{ﬂl} T T T T —0
o 1 2 3
PCq
{xi,B:)}
Diffusion
Sample from
Train Thermodynamic ~ qcecs T Thermodynamic Map
Map on MD structures ateachT

\ S M@ s




Left-handed

o
Z
>

Right-handed

Results for chirally symmetric peptide

REMD performed with replicas at 400, 412,...500 K and 0% exchange (!!!)




Results for chirally symmetric peptide

ﬁ* REMD performed with replicas at 400, 412,...500 K and 0% exchange (!!!)

Left-handed Right-handed

Input to TM: 18 dihedrals
Noise to data projected along 2 dihedrals



Results for chirally symmetric peptide

REMD performed with replicas at 400, 412,...500 K and 0% exchange (!!!)

A
Wy
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T = 400K
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Left-handed

unbiased benchmark

w— DDPM

MBAR

WTMetaD

w— DDPM

MBAR
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Input to TM: 18 dihedrals

Noise to data projected along 2 dihedrals



Free Energy (FE)
landscape
(NMR in green)

Stable
Conformations
(NMR in blue)

1

Results for GCAA tetraloop

AG at 310K (kcal/mal)

2
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Free Energy (FE)
landscape
(NMR in green)

Stable
Conformations
(NMR in blue)

PC,

1

2

Results for HIV-TAR RNA

AG at 310K (kcal/mol)
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MALAT1 and Let-7f RNA

In-progress work joint with Schneekloth Lab @National Cancer Institute
RNA sequence and conformation specific drug discovery

GROMACS 2020
DESRES force field Tan et. al., (2018)
NPT ensemble

10 replicas

Wang, Herron, Tiwary PNAS 2022

Sus total simulation time (500 ns/ replica)
Torsion angles recorded every 0.2ps

Using bioinformatics we skip the initial folding problem
f} Let-7f miRNA
GGGCGCAAGCCU — Rosetta Jp—
Watkin, Rangan, Das (2020) H
Replica Simulations
f {Oé, 5, Y, 5, &, C, a } Representative structures
Tmax
f . ﬁ
9 gs
*g ﬁ Denoising ‘H. q‘; w ﬁ
@ : Diffusi
¥ S Model § 70
1 | -1
o w
Trin Time > \", 230 Generated structural ensemble
| at 310K
v No experimental structure
for free Let-7f

v/ No computational studies
v Oncogenic

Herron, Mondal, Schneekloth, Tiwary arXiv



Wrapping up (1):
Proteins, RNA and crystals: Life on different energy landscapes can be sampled with different
Al-stat mech integrated sampling schemes

AlphaFold2-RAVE: From Sequence to Boltzmann Ranking Proteins RNAs

Bodhi P. Vani, Akashnathan Aranganathan, Dedi Wang, and Pratyush Tiwary*

Cite This: J. Chem. Theory Comput. 2023, 19, 4351-4354 I: I Read Online Centl’a|
< science =[Y0
;Oq/\ http:/pubs acs.org/joumal/acscii
IMUNICATIONS Order/ Disorder Interrogating RNA—Small Molecule Interactions with Structure
Probing and Artificial Intelligence-Augmented Molecular

s SpeCtrum Simulations

OPEN Yihang Wang# Shaifaly Parmar,” John S. Schneekloth,* and Pratyush Tiwary*

Past-future information bottleneck for sampling ite This: ACS Cent. Sci 2022, 8, 741- ead Online

molecular reaction coordinate simultaneously e EL

with thermodynamics and kinetics

Yihang Wang® ', Joso Marcelo Lamim Ribeiro? & Pratyush Tiwary?
State pred ictive information bottleneck K. Dill, J McCa’IIum, Science (2012). D.J. Wales, A.nn. Rev. Phys. Chem. (2017).

The Protein-Folding problem, 50 years on Exploring Energy Landscapes
Cite as: 3. Chem. Phys. 154, 134111 (2021); doi: 10.1063/5.0038198 . . . . .
Submitted: 19 November 2020 - Accepted: 23 March 2021 - Ordered — 3 low-dimensional RC Disordered — A low dimensional RC
Published Online: 5 April 2021 . . .
oot warg' © ard Pratyesh Ty 3 well-separated metastable domains Metastability is suspect
Transition pNAS SARCH ARTICLE | APPLIED PHYSICAL SCIENCES
Basin / states
¥ \ From data to noise to data for mixing physics across
temperatures with generative artificial intelligence
PNAS Yihang Wang?®, Lukas Herron®®, and Pratyush Tiwary®<'
RESEARCH ARTICLE  APPLIED PHYSICAL SCIENCES
Edited by Sharon Glotzer, University of Michigan, Ann Arbor, MI; received March 2, 2022; accepted July 7, 2022

Potential energy

Driving and characterizing nucleation of urea and glycine
polymorphs in water

Ziyue Zou™', Eric R. Beyerle®' (), Sun-Ting Tsai, and Pratyush Tiwary*®?

Inferring phase transitions and critical exponents from limited observations
with Thermodynamic Maps

Lukas Herron and Kinjal Mondal
Biophysics Program and Institute for Physical Science and Technology,
University of Maryland, College Park, MD, 20742, USA

Edited by Pablo Debenedetti, Princeton University, Princeton, NJ; received September 20, 2022; accepted January 17, 2023 Ideal glass

Coordinates

. a11s John S. Schneekloth Jr.
Debenedettl, Stllllnger, Natu re (2001)- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA

Supercooled Liquids & the Glass Transition 5 _—
ratyush Tiwary
Department of Chemistry and Biochemistry and Institute for Physical Science and Technology,
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Wrapping up (2): Diffusion Models, with origins in Zwanzig and Jarzynski
are arguably the most extrapolative Generative Al models currently available

Deep unsupervised learning using nonequilibrium thermodynamics

Authors
Publication date
Journal

Description

Total citations

Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, Surya Ganguli
2015/3/12
International Conference on Machine Learning

A central problem in machine learning involves modeling complex data-sets using highly
flexible families of probability distributions in which learning, sampling, inference, and
evaluation are still analytically or computationally tractable. Here, we develop an
approach that simultaneously achieves both flexibility and tractability. The essential idea,
inspired by non-equilibrium statistical physics, is to systematically and slowly destroy
structure in a data distribution through an iterative forward diffusion process. We then
learn a reverse diffusion process that restores structure in data, yielding a highly flexible
and tractable generative model of the data. This approach allows us to rapidly learn,
sample from, and evaluate probabilities in deep generative models with thousands of
layers or time steps, as well as to compute conditional and posterior probabilities under
the learned model. We additionally release an open source reference implementation of
the algorithm.

Cited by 2502

2015 2016 2017 2018 2019 2020 2021 2022 2023

GENERALIZATION IN DIFFUSION MODELS ARISES FROM
GEOMETRY-ADAPTIVE HARMONIC REPRESENTATION

Zahra Kadkhodaie Florentin Guth
Ctr. for Data Science, New York University Ctr. for Data Science, New York University
zk388@nyu.edu Flatiron Institute, Simons Foundation

florentin.guth@nyu.edu

Eero P. Simoncelli Stéphane Mallat
New York University College de France
S, Flatiron Institute, Simons Foundation Flatiron Institute, Simons Foundation
AN eero.simoncelli@nyu.edu stephane.mallat@ens. fr
ABSTRACT

High-quality samples generated with score-based reverse diffusion algorithms
provide evidence that deep neural networks (DNN) trained for denoising can learn
high-dimensional densities, despite the curse of dimensionality. However, recent
reports of memorization of the training set raise the question of whether these
networks are learning the “true” continuous density of the data. Here, we show
that two denoising DNNs trained on non-overlapping subsets of a dataset learn
nearly the same score function, and thus the same density, with a surprisingly small
number of training images. This strong generalization demonstrates an alignment
of powerful inductive biases in the DNN architecture and/or training algorithm
with properties of the data distribution. We analyze these, demonstrating that
the denoiser performs a shrinkage operation in a basis adapted to the underlying
image. Examination of these bases reveals oscillating harmonic structures along
contours and in homogeneous image regions. We show that trained denoisers are
inductively biased towards these geometry-adaptive harmonic representations by
demonstrating that they arise even when the network is trained on image classes
such as low-dimensional manifolds, for which the harmonic basis is suboptimal.
Additionally, we show that the denoising performance of the networks is near-
optimal when trained on regular image classes for which the optimal basis is known
to be geometry-adaptive and harmonic.

:2310.02557v1 [cs.CV] 4 Oct 20

Stat Mech and Theoretical Chemistry have a lot to teach Al
for practical, data-sparse applications to natural sciences
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