Natural swarms in 3.99 dimensions A renormalization group approach to biological systems

Mattia Scandolo PostDoc @ CoBBS Lab, ISC-CNR - soon moving at UChicago April 16, 2024 – Trento

Experiments Theoretical "ingredients" **Renormalization Group**

Experiments Theoretical "ingredients"

Renormalization Group

No global order

No net group motion: swarms are in a **disordered phase**

A. Attanasi et al., PLoS Computational Biology, 2014

Scale-free spatial correlations

No net group motion: swarms are in a **disordered phase**

are strong and scale-free

Velocity-velocity correlations $C(r) = \langle \delta \mathbf{v}(x_0, t_0) \cdot \delta \mathbf{v}(x_0 + r, t_0) \rangle_{x_0, t_0}$

exhibit finite-size scaling

A. Attanasi et al., PLoS Computational Biology, 2014 - A. Attanasi et al., PRL, 2014

Dynamic scaling

No net group motion: swarms are in a **disordered phase**

Velocity-velocity correlations are strong and scale-free ($\xi \sim L$) and exhibit finite-size scaling

A. Cavagna et al., Nature Physics, 2017 - A. Cavagna et al., Nature Physics, 2023

Swarms behave as systems near a critical order-disorder transition

Dynamic scaling

No net group motion: swarms are in a **disordered phase**

The dynamic correlation function exhibits scaling behaviour

Velocity-velocity correlations are strong and scale-free ($\xi \sim L$) and exhibit finite-size scaling

Summary

No net group motion: swarms are in a **disordered phase**

The **dynamic** correlation functions exhibit scaling behaviour with $z = 1.37 \pm 0.11$

A. Attanasi et al., PLoS Computational Biology, 2014 - A. Attanasi et al., PRL, 2014 - A. Cavagna et al., Nature Physics, 2023

Velocity-velocity correlations are strong and scale-free ($\xi \sim L$) and exhibit finite-size scaling

My goal: understanding the physics behind swarm's dynamic collective behaviour

Experiments Theoretical "ingredients" **Renormalization Group**

Experiments **Theoretical "ingredients"**

Renormalization Group

Imitative interactions

Simple ferromagnets

Experimental observation

Effective **alignment** between trajectories Imitative **ferromagnetic** behaviour

1.37

A. Attanasi et al., PRL, 2014 - P.C. Hohenberg and B.I. Halperin, RMP 1977

Theoretical modelling

Model A (Dynamic Landau-Ginzburg)

$$\partial_t \boldsymbol{\psi} = -\Gamma \frac{\delta \mathcal{H}}{\delta \boldsymbol{\psi}} + \boldsymbol{\theta}$$
$$\mathcal{H} = \int d^d x \, \frac{1}{2} \left(\nabla \boldsymbol{\psi} \right)^2 + \frac{r}{2} \boldsymbol{\psi}^2 + \frac{u}{4} \boldsymbol{\psi}^4$$

Imitative interactions

Simple ferromagnets

1.37

Z

P.C. Hohenberg and B.I. Halperin, RMP 1977

X

1.0

 $z \approx 2$ Critical Model A:

P.C. Hohenberg and B.I. Halperin, RMP 1977

X

1.0

time ~ space^z

The smaller *z*, the faster information is propagated

In ferromagnets $z = 2 \rightarrow$ information propagates diffusively

What does enhance information propagation?

A. Cavagna et al., Nature Physics, 2017

A. Cavagna et al., J. Stat. Phys. 2015- A. Cavagna et al., Nature Physics 2017

Imitative (alignment) forces are a laplacian in coarse-grained theories

Overdamped

$$\partial_t \boldsymbol{\psi} \sim \Gamma \nabla^2 \boldsymbol{\psi}$$

$$\omega \sim k^2$$

 $z \sim 2$

generator of rotations of ψ

A. Cavagna et al., Nature Physics, 2017

Inertial behaviour

Model G

To recover underdamped inertial behaviour we can use symmetries.

$$\left\{s_{\alpha},\psi_{\beta}\right\} = g \,\epsilon_{\alpha\beta\gamma}\psi_{\gamma}$$

Overdamped (Model A)

$$\partial_t \boldsymbol{\psi} = -\Gamma \frac{\delta \mathcal{H}}{\delta \boldsymbol{\psi}} + \boldsymbol{\theta}$$

Inertial

P.C. Hohenberg and B.I. Halperin, RMP 1977 - A. Cavagna et al., PRL 2019

$$\psi
ightarrow$$
 order parameter

 $s \rightarrow$ spin field (generator of rotations of ψ)

Underdamped (Model G)

$$\begin{cases} \partial_t \psi = -\Gamma \frac{\delta \mathcal{H}}{\delta \psi} + g \psi \times \frac{\delta \mathcal{H}}{\delta s} + \theta \\ \partial_t s = \lambda \nabla^2 \frac{\delta \mathcal{H}}{\delta s} + g \psi \times \frac{\delta \mathcal{H}}{\delta \psi} + \zeta \end{cases}$$
exponent: $z = 1.5$ Inertia

$\mathscr{H} = \left[d^d x \frac{1}{2} \left(\nabla \psi \right)^2 + \frac{r}{2} \psi^2 + \frac{u}{4} \psi^4 \right]$

 $\partial_t \to D_t = \partial_t + v_0 \boldsymbol{\psi} \cdot \nabla$

 $\left\{ s_{\alpha}, \psi_{\beta} \right\} = g \,\epsilon_{\alpha\beta\gamma} \psi_{\gamma}$

P.C. Hohenberg and B.I. Halperin, RMP 1977 - FNS, PRL 1977

Experiments Theoretical "ingredients" **Renormalization Group**

Experiments Theoretical "ingredients" **Renormalization Group**

 $x \to bx$ $t \to b^z t$ $\varphi \to b^\chi \varphi$

$$x \to bx$$
 $t \to b^z t$ $\varphi \to b^\chi \varphi$

K.G. Wilson, PRB 1971 - K.G. Wilson and M.E. Fisher, PRL 1972 - N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, 1992

$$\mathsf{RG} \mapsto S_b$$

 $S_0 \xrightarrow{RG} S_1 \xrightarrow{RG} S_2 \xrightarrow{RG} \dots \xrightarrow{RG} S^*$

Universality: different bare theories are described by the same fixed point S^* !

K.G. Wilson, PRB 1971 - K.G. Wilson and M.E. Fisher, PRL 1972 - N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, 1992

Active inertial (Self-Propelled Model G) z = 1.35

Active non-inertial (Chen, Toner and Lee) z = 1.73

A. Cavagna et al., Nature Physics 2023

A new active inertial universality class

Equilibrium non-inertial (Model A)

Active non-inertial (Chen, Toner and Lee) 1.

Equilibrium inertial (Model G)

Active inertial (Self-Propelled Model G) 1

Take-home messages

- Renormalization Group is a powerful tool in describing true biological systems
- Our Content of Sector Content of Content
- New non-equilibrium universality classes are relevant in explaining biophysical data
- Inertial behaviour and activity are essential ingredients in the description of swarms

Bibliography

A. Cavagna, L. Di Carlo, I. Giardina, TS. Grigera, S. Melillo, L. Parisi, G. Pisegna, M. Scandolo Natural swarms in 3.99 dimensions, Nature Physics 19, 1043–1049 (2023)