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Introduction : Generative approach
training generating

● Energy based models (RBMs, Generative Convnets)
● Diffusion models, normalizing flows
● Variational AutoEncoder (VAE)
● Generative Adverarial Network (GAN)
● Autoregressive methods
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Introduction : generative approach

The 1000 Genomes 
Project Consortium

MSA protein sequences

MNIST

CELEBA
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Energy based models (EBMs)

● Dataset

Hinton, Hopfield, LeCun, Bengio

Empirical  Model   

Boltzmann distribution

Learning : adjust the parameters so that the dataset 
configurations are typical configurations of the model.
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Energy based models (EBMs)
● Boltzmann Machines (Ising/Hopfield/Potts models)

● Restricted Boltzmann Machines

● Deep Boltzmann Machines

● Generative ConvNets
- LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., & Huang, F. (2006). 
A tutorial on energy-based learning.
- Xie, J., Lu, Y., Zhu, S. C., & Wu, Y. (2016, June). A theory of 
generative convnet.

- Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for 
Boltzmann machines. Cognitive science, 9(1), 147-169.

- Smolensky, P. (1986). Information processing in dynamical systems: 
Foundations of harmony theory.

-Ruslan Salakhutdinov, Geoffrey Hinton (2009) Deep Boltzmann Machines. 

-Bengio, Y. (2009). Learning deep architectures for AI. 

 

Latent variables

visible variables
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Review of the training procedure

Dataset

Goal of the training:

Empirical  Model   

Minimize
Kullback-Leibler (KL) 
divergence 

Constant

log-likelihood
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Review of the training procedure

Dataset

Goal of the training:

Empirical  Model   

Maximize the 
log-likelihood (LL)

Gradient 
ascent
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Training Energy-Based Models (EBMs)

Visible  ⇒ data

Latent ⇒ correlations Marginal distribution

⇒
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Training Energy-Based Models (EBMs)

Visible  ⇒ data

Latent ⇒ correlations Marginal distribution

⇒
Training: maximize the log-likelihood

(Stochastic) gradient ascent 

Easy Hard  ⇒ MCMC sampling

Insufficient Monte Carlo samplings have strong effects on the 
quality of the model learned

● Decelle, Furtlehner, Seoane NeurIPS (2021)
● Agoritsas, Catania, Decelle, Seoane ICML (2023)
● Carbone, Decelle, Seoane, Rosset, arXiv: 2307.06797 (2023) 
● Béreux, Decelle, Furtlehner, Seoane - SciPost Physics (2023)
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On the gradient ascent
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Update rule:

⇒
Moment matching statistics
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On the gradient ascent
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Fixed point : 

Update rule:

⇒
Moment matching statistics

If the optimization problem is convex, as e.g. 

⇒
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Generating new samples 

⇒
Empirical  Model   

Dominated minimum 
free-energy 

configurations

Markov Chain Monte Carlo
Langevin dynamics

Generate new samples


Me
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Generating new samples 

⇒
Empirical  Model   

Dominated minimum 
free-energy 

configurations

Markov Chain Monte Carlo
Langevin dynamics

Generate new samples

Effective model 
for the data

Modeling, interpretability

 ⇒ Free-energy landscape


Me
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Interpreting the energy function
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Inverse Ising problem
Am I able to infer which was the 
interaction model that generated it?

D
at

as
et

Nguyen, H. C., Zecchina, R., & Berg, J. 
(2017)  Advances in Physics
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Applications I:  reconstruction of neural 
connections
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Roudi, Y., Aurell, E., & Hertz, J. A. (2009)
Schneidman, E., Berry, M. J., Segev, R., & Bialek, W. (2006)
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Applications II: Inverse Potts
Direct coupling analysis (DCA)

q=21

MSA

Model the “true”
fitness landscape

Statistical sequence 
landscape
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q=21

MSA

Applications II: Inverse Potts
Direct coupling analysis (DCA)

Cocco, Feinauer, Figliuzzi, Monasson. Weigt, Rep. Prog. Phys. 81 (2018) 032601

Structure prediction

Model the “true”
fitness landscape

Statistical sequence 
landscape
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q=21

MSA

Model the “true”
fitness landscape

Ex. Inverse Potts
Direct coupling analysis (DCA)

q=21

MSA

Cocco, Feinauer, Figliuzzi, Monasson. Weigt, Rep. Prog. Phys. 81 (2018) 032601

Structure prediction

Rodriguez-Rivas, J., Croce, G., Muscat, M., & Weigt, M. 
Proceedings of the National Academy of Sciences, (2022).

Mutation prediction



  24 / 76

Pairwise models : The Boltzmann machine

Simple and easy to interpret, but are strongly limited...

 Hinton and Sejnowski (1983) 
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Pairwise models : The Boltzmann machine

Simple and easy to interpret, but are strongly limited...

 Hinton and Sejnowski (1983) 

learning



  26 / 76

Pairwise models : The Boltzmann machine

Simple and easy to interpret, but are strongly limited...

 Hinton and Sejnowski (1983) 

learning

Generation

We need to encode higher order correlations !
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Encoding high-order correlations

# parameters diverge too fast...
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Encoding high-order correlations

# parameters diverge too fast...

But in real data the 
interactions are sparse

Only some n-tuples of 
variables are correlated
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Alternative solution: add hidden variables

Marginal 
probability



  30 / 76

Alternative solution: add hidden variables

Marginal 
probability

The 
encoding is 
not unique !
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Alternative solution: add hidden variables

There are even more ways to encode the same 
interaction if you consider biases…
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Alternative solution: add hidden variables

In order to encode an interaction model with at most k-body interactions we need O(N
k
) hidden 

nodes, with N
k
 the number of non-zero J(k) couplings (# parameters  O(N

k
)N) << O(Nk)
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The Restricted Boltzmann Machine
-Smolensky, P. (1986)

Visible  : data

Hidden : “Neurons”  → features extracted

Universal approximator ! Le Roux and Bengio. Neural computation (2008)
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The Restricted Boltzmann Machine
-Smolensky, P. (1986)

Universal approximator !

Le Roux and Bengio. Neural computation (2008)
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The Restricted Boltzmann Machine
-Smolensky, P. (1986)

Universal approximator !

Le Roux and Bengio. Neural computation (2008)

The RBM is much more expressive than

 the BM, but can we 

make it just as interpretable?
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The RBM as a model for interacting 
spins
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From the RBM to a generalized Ising model

The RBM Rewrite in terms of 
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The RBM
Rewrite in terms of 

From the RBM to a generalized Ising model
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The RBM
Rewrite in terms of 

From the RBM to a generalized Ising model

Given an 
RBM, we know 
which effective 
Ising Model it 
corresponds to
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From the RBM to a generalized Ising model
Introduce the random variable

Central limit theorem
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Numerical controlled experiments

Generate equilibrium samples
With a known model
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Decelle,  Furtlehner,  Navas 
Gómez,  Seoane, 
arXiv:2309.02292
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“Experimental test”

Coupling matrix 
used to generate the 
samples

Inferred coupling matrix We want to recover:
● The connectivity network
● The coupling strength  
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1D Ising model β=0.2
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1D Ising model β=0.2

Quality comparable to standard 
pairwise methods
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1D Ising + 3-body interactions
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2D Ising model
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Previous attempts
G. Cossu, L. Del Debbio, T. Giani, A. 
Khamseh and M. Wilson, Phys. Rev. B (2019)
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Previous attempts N. Bulso and Y. Roudi, 
Neural Computation (2021)

Equivalence between 
the RBM and a lattice 
gas model v

i
={0,1} 
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Beyond Ising spins
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From Ising to Potts

One can generalize to Potts variables
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From Ising to Potts

We can use it to infer 
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Main difficulty: gauge symmetry

Invariant
under the 
transformation

The gauge transformation changes all orders of interaction !

And the zero sum gauge in the RBM is not equivalent to the zero sum gauge in the 
effective Potts model
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Blume-Emery-Griffiths Model model
Model for liquid 4He–3He mixtures,
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Blume-Emery-Griffiths Model model
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Analyzing the free energy landscape

Decelle, A., Rosset, L., & Seoane, B. PRE (2023)
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Free energy landscape
● We want to use this landscape to get a notion also to identify 

groups of similar sequences

● We want to obtain f(M) as a function of the probability of having 
variables v and h activated                    M={{fi

q}, {ma}}

●                                                ⇒ Find the Ms with lower f(M)

We can use 
basins of 

attraction to 
cluster data points
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● We use the Plefka expansion to approximate f(M) 

●

● Minima                             set of self-consistent equations (TAP eqs.) ⇒

Approximate the free energy

Solve iteratively
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●

●

● Minima                             set of self-consistent equations (TAP eqs.) ⇒

Approximate the free energy

Solve iteratively
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●

●

● Minima                             set of self-consistent equations (TAP eqs.) ⇒

Solve iteratively

Basin of attraction: class
Fixed point: “representative” 

features 
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Data has a hierarchical organization
In order to be expressive enough, the RBM must
describe all possible levels of similarity

The closest fixed point might be too detailed to 
be useful for a general classification
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Data has a hierarchical organization
In order to be expressive enough, the RBM must
describe all possible levels of similarity

The closest fixed point might be too detailed to 
be useful for a general classification

How do we detect larger basins?
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Save machines

More are more structure 
added to the model

The RBM learns in an hierarchical way
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Save machines

More are more structure 
added to the model

The RBM learns in an hierarchical way
The W encode the PCA 
of the dataset: Pairwise correlations

* Decelle, Fissore and Furtlehner, Spectral dynamics of learning in restricted boltzmann machines (2017)
* Decelle, & Furtlehner, Restricted Boltzmann machine: Recent advances and mean-field theory (2021)

Higher order correlations
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Hierarchical 
Clustering
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Hierarchical 
Clustering
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Example: synthetic evolutionary data
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Example: synthetic evolutionary data

Train a RBM 

Build a tree
Using machines saved during
the training
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Synthetic data
Real tree

Reconstruction 
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Synthetic data



  71 / 76

Hierarchical 
Clustering

MNIST data
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Hierarchical 
Clustering

MNIST data
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Protein function classification
 CPF protein family
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Hierarchical 
Clustering Automatically label 

sequences based on a few 
examples



  75 / 76

Conclusions
● RBMs are both expressive and simple
● The are as interpretable as the Boltzmann Machines
● They can be used to infer multi-body interactions without 

blowing the number of parameters
● We have mappings between the:

● Bernouilli-Bernoulli RBM  Generalized Ising model→
● Bernouilli-Potts RBM   Generalized Potts model (still →

testing)
● We can use the RBM for hierarchical clustering
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Code torchRBM
Training RBMs

Code 
Inference 
couplings
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