

Inferring effective couplings with Restricted Boltzmann Machines

Beatriz Seoane

LISN Paris-Saclay University

Decelle, Furtlehner, Navas Gómez, Seoane, SciPost Phys (2024) arXiv:2309.02292
\& follow-up

Introduction : Generative approach

training
generating

- Energy based models (RBMs, Generative Convnets)
- Diffusion models, normalizing flows
- Variational AutoEncoder (VAE)

- Generative Adverarial Network (GAN)
- Autoregressive methods

Introduction : generative approach

Energy based models (EBMs)

- Dataset

$$
X=\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(M)}\right\}
$$

| $\mathbf{3}$ | 8 | 6 | 9 | 6 | 4 | 5 | 3 | 8 | 4 | 5 | 2 | 3 | 8 | 4 | 8 |
| :--- |
| $\mathbf{1}$ | 5 | 0 | 5 | 9 | 7 | 4 | 1 | 0 | 3 | 0 | 6 | 2 | 9 | 9 | 4 |
| 1 | 3 | 6 | 8 | 0 | 7 | 1 | 6 | 8 | 9 | 0 | 3 | 8 | 3 | 7 | 7 |
| 8 | 4 | 4 | 1 | 2 | 9 | 8 | 1 | 1 | 0 | 6 | 6 | 5 | 0 | 1 | 1 |

Empirical
$p_{\text {data }}(x) \sim p_{\theta}(x)=\frac{\text { Model }}{e^{-E_{\theta}(x)}}$
Z_{θ}

Boltzmann distribution

$$
E_{\theta}(x)
$$

Learning : adjust the parameters so that the dataset configurations are typical configurations of the model.

Energy based models (EBMs)

- Boltzmann Machines (Ising/Hopfield/Potts models)

Latent variables

- Ackley, D. H., Hinton, G. E., \& Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive science, 9(1), 147-169.

- Restricted Boltzmann Machines
- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory.

- Generative ConvNets
- LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., \& Huang, F. (2006). A tutorial on energy-based learning.
- Xie, J., Lu, Y., Zhu, S. C., \& Wu, Y. (2016, June). A theory of generative convnet.

Review of the training procedure

Dataset

$$
X=\left\{x^{(1)}, \ldots, x^{(M)}\right\}
$$

| 3 | 8 | 6 | 9 | 6 | 4 | 5 | 3 | 8 | 4 | 5 | 2 | 3 | 8 | 4 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 0 | 5 | 9 | 7 | 4 | 1 | 0 | 3 | 0 | 6 | 2 | 9 | 9 | 4 |
| 1 | 3 | 6 | 8 | 0 | 7 | 7 | 6 | 8 | 9 | 0 | 3 | 8 | 3 | 7 | 7 |
| 8 | 4 | 4 | 1 | 2 | 9 | 8 | 1 | 1 | 0 | 6 | 6 | 5 | 0 | 1 | 1 |

Goal of the training:

$$
\left.\operatorname{pmpirical~}_{\text {data }}(x) \sim \begin{array}{c}
\text { Model } \\
p_{\theta}(x)
\end{array}\right) \frac{e^{-E_{\theta}}(x)}{Z}
$$

Minimize
Kullback-Leibler (KL) divergence

$$
\begin{aligned}
D_{\mathrm{KL}}\left(p_{\text {data }} \| p_{\theta}\right) & =\sum_{\boldsymbol{x}} p_{\text {data }}(\boldsymbol{x}) \log \frac{p_{\text {data }}(\boldsymbol{x})}{p_{\theta}(\boldsymbol{x})} \quad \text { log-likelihood } \\
& =\sum_{\boldsymbol{x}} \underbrace{p_{\text {data }}(\boldsymbol{x}) \log p_{\text {data }}(\boldsymbol{x})}_{\text {Constant }}-\sum_{\boldsymbol{x}}^{\sum_{\text {data }}(\boldsymbol{x}) \log p_{\theta}(\boldsymbol{x})}
\end{aligned}
$$

Review of the training procedure

Dataset $\quad X=\left\{x^{(1)}, \ldots, x^{(M)}\right\}$

| 3 | 8 | 6 | 9 | 6 | 4 | 5 | 3 | 8 | 4 | 5 | 2 | 3 | 8 | 4 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 0 | 5 | 9 | 7 | 4 | 1 | 0 | 3 | 0 | 6 | 2 | 9 | 9 | 4 |
| 1 | 3 | 6 | 8 | 0 | 7 | 7 | 6 | 8 | 9 | 0 | 3 | 8 | 3 | 7 | 7 |
| 8 | 4 | 4 | 1 | 2 | 9 | 8 | 1 | 1 | 0 | 6 | 6 | 5 | 0 | 1 | 1 |

$$
\begin{aligned}
& \text { Empirical } \\
& p_{\text {data }}(x) \sim p_{\theta}(x)=\frac{e^{-E_{\theta}}(x)}{Z}
\end{aligned}
$$

Maximize the log-likelihood (LL)

$$
\mathcal{L}(\boldsymbol{\theta} \mid X)=\sum_{m=1}^{M} \log p_{\theta}\left(\boldsymbol{x}=x^{(m)}\right)
$$

$$
\theta_{i}^{(t+1)} \leftarrow \theta_{i}^{t}+\left.\gamma \frac{\partial \mathcal{L}}{\partial \theta_{i}}\right|_{\theta=\theta_{i}^{(t)}}
$$

Training Energy-Based Models (EBMs)

Training Energy-Based Models (EBMs)

Training Energy-Based Models (EBMs)

$$
\mathcal{E}(x, \boldsymbol{h} ; \boldsymbol{\theta}) \Rightarrow p_{\theta}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\theta}(x, \boldsymbol{h})}}{Z_{\theta}}=\frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
$$

Visible \Rightarrow data
Training: maximize the log-likelihood

$$
\mathcal{L}(\boldsymbol{\theta} \mid X)=\left\langle\log p_{\theta}(\boldsymbol{x})\right\rangle_{p_{\text {data }}}=\left\langle-E_{\theta}(\boldsymbol{x})\right\rangle_{p_{\text {data }}}-\log Z_{\theta}
$$

$$
\nabla \mathcal{L}=\underbrace{\left\langle-\nabla E_{\theta}\right\rangle_{p_{\text {data }}}}_{\text {Easy }}-\underbrace{\left\langle-\nabla E_{\theta}\right\rangle_{p_{\theta}}}_{\text {Hard } \Rightarrow \text { MCMC sampling }}
$$

Training Energy-Based Models (EBMs)

$$
\begin{aligned}
& \boldsymbol{\nabla} \mathcal{C} \quad(\boldsymbol{\nabla}) \quad \text { (Stochastic) gradient ascent }
\end{aligned}
$$

On the gradient ascent

Update rule: $\quad \nabla \mathcal{L}_{\theta}=\left\langle-\nabla E_{\theta}\right\rangle_{p_{\text {data }}}-\left\langle-\nabla E_{\theta}\right\rangle_{p_{\Theta}}$

$$
\boldsymbol{\theta}(t+t) \longleftarrow \boldsymbol{\theta}(t)+\gamma \boldsymbol{\nabla} \mathcal{L}(t)
$$

On the gradient ascent

Update rule: $\quad \nabla \mathcal{L}_{\theta}=\left\langle-\nabla E_{\theta}\right\rangle_{p_{\text {data }}}-\left\langle-\nabla E_{\theta}\right\rangle_{p_{\Theta}}$

$$
\text { Fixed point : } \nabla \mathcal{L}_{\theta}=\mathbf{0} \Rightarrow\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\text {data }}}=\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\theta}} \forall \theta_{i}
$$

Moment matching statistics

On the gradient ascent

Update rule: $\quad \nabla \mathcal{L}_{\theta}=\left\langle-\nabla E_{\theta}\right\rangle_{p_{\text {data }}}-\left\langle-\nabla E_{\theta}\right\rangle_{p_{\Theta}}$

$$
\text { Fixed point : } \boldsymbol{\nabla} \mathcal{L}_{\theta}=\mathbf{0} \Rightarrow\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\text {data }}}=\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\theta}} \forall \theta_{i}
$$

Moment matching statistics
If the optimization problem is convex, as e.g. $\nabla E_{\theta}=\boldsymbol{f}(\boldsymbol{x})$

$$
E=-\sum_{i j} J_{i j} S_{i} S_{j}-\sum_{i} h_{i} S_{i} \Rightarrow\left\{\begin{aligned}
\left\langle S_{i} S_{j}\right\rangle_{p_{J, h}} & =\left\langle S_{i} S_{j}\right\rangle_{p_{\text {data }}} & \forall i, j \\
\left\langle S_{i}\right\rangle_{p_{J, h}} & =\left\langle S_{i}\right\rangle_{p_{\text {data }}} & 15 / 76
\end{aligned}\right.
$$

Generating new samples

$$
p_{\text {data }}(x) \sim \frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
$$

$$
\begin{gathered}
\text { Dominated minimum } \\
\text { free-energy } \\
\text { configurations }
\end{gathered}
$$

Markov Chain Monte Carlo Langevin dynamics
\Rightarrow Generate new samples

$$
\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\text {data }}}=\left\langle\frac{\partial E}{\partial \theta_{i}}\right\rangle_{p_{\theta}} \forall \theta_{i}
$$

Generating new samples

Markov Chain Monte Carlo

$$
p_{\text {data }}(x) \sim \frac{e^{-E_{\theta}(\boldsymbol{x})}}{Z_{\theta}}
$$

$$
\begin{array}{cll}
\begin{array}{c}
\text { Dominated minimum } \\
\text { free-energy } \\
\text { configurations }
\end{array} \\
\{\boldsymbol{x}\}_{\text {eq }, \theta} \sim \mathcal{D}
\end{array} \Rightarrow \begin{aligned}
& \text { Langevin dynamics } \\
& \text { Generate new samples }
\end{aligned}
$$

$E_{\theta}(x) \begin{aligned} & \text { Effective model } \\ & \text { for the data }\end{aligned}$
\Rightarrow Free-energy landscape
Modeling, interpretability

Interpreting the energy function

Inverse Ising problem

$$
\begin{gathered}
E_{\text {Ising 2D }}(\boldsymbol{S})=-\hat{J} \sum_{\langle i, j\rangle} S_{i} S_{j} \\
\hat{\beta}=1 / \hat{T}
\end{gathered}
$$

Am I able to infer which was the interaction model that generated it?

$$
E_{J, h}(\boldsymbol{x})=-\sum_{i j} J_{i j} x_{i} x_{j}-\sum_{i} h_{i} x_{i}
$$

Applications I: reconstruction of neural connections

Roudi, Y., Aurell, E., \& Hertz, J. A. (2009)
Schneidman, E., Berry, M. J., Segev, R., \& Bialek, W. (2006)

A

Applications II: Inverse Potts Direct coupling analysis (DCA)

Applications II: Inverse Potts Direct coupling analysis (DCA)

$$
E_{J, h}(\boldsymbol{S})=-\sum_{i, j=1}^{N_{v}} \sum_{q_{1}, 2}^{N_{q}} J_{i j}^{q_{1}, q_{2}} \delta_{S_{i}, q_{1}} \delta_{S_{i}, q_{2}}-\sum_{i=1}^{N_{v}} \sum_{q=1}^{N_{q}} h_{i}^{q} \delta_{S_{i}, q} \quad S_{i}=\{1, \ldots, q\}
$$

Cocco, Feinauer, Figliuzzi, Monasson. Weigt, Rep. Prog. Phys. 81 (2018) 032601

Ex. Inverse Potts Direct coupling analysis (DCA)

Cocco, Feinauer, Figliuzzi, Monasson. Weigt, Rep. Prog. Phys. 81 (2018) 032601
Rodriguez-Rivas, J., Croce, G., Muscat, M., \& Weigt, M.

Pairwise models : The Boltzmann machine

Hinton and Sejnowski (1983)

$$
E_{J, h}(\boldsymbol{x})=-\sum_{i j} J_{i j} x_{i} x_{j}-\sum_{i} h_{i} x_{i}
$$

Simple and easy to interpret, but are strongly limited...

Pairwise models : The Boltzmann machine

$$
E_{J, h}(\boldsymbol{x})=-\sum_{i j} J_{i j} x_{i} x_{j}-\sum_{i} h_{i} x_{i}
$$

Simple and easy to interpret, but are strongly limited...

3	8	6	9	6	4	5	3	8	4	5	2	3	8	4	8
1	5	0	5	9	7	4	1	0	3	0	6	2	9	9	4
1	3	6	8	0	7	7	6	8	9	0	3	8	3	7	7
8	4	4	1	2	9	8	1	1	0	6	6	5	0	1	1

BM inferred pairwise coupling matrix

Generation

Pairwise models : The Bolt

We need to encode higher order correlations !

$$
E_{J, h}(\boldsymbol{x})=-\sum_{i j} J_{i j} x_{i} x_{j}-\sum_{i} h_{i} x_{i}
$$

aoan
anaja a a a a a
ajajajazaja
aja a a dadadad
वavana anana
ajanajajajaja

Simple and easy to interpret, but are strongly limited...

| 3 | 8 | 6 | 9 | 6 | 4 | 5 | 3 | 8 | 4 | 5 | 2 | 3 | 8 | 4 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 0 | 5 | 9 | 7 | 4 | 1 | 0 | 3 | 0 | 6 | 2 | 9 | 9 | 4 |
| 1 | 3 | 6 | 8 | 0 | 7 | 1 | 6 | 8 | 9 | 0 | 3 | 8 | 3 | 7 | 7 |
| 8 | 4 | 4 | 1 | 2 | 9 | 8 | 1 | 1 | 0 | 6 | 6 | 5 | 0 | 1 | 1 |

learning

Encoding high-order correlations

$$
\begin{aligned}
& f_{i}=\left\langle x_{i}\right\rangle_{\text {data }} \\
& f_{i j}=\left\langle x_{i} x_{j}\right\rangle_{\text {data }} \\
& f_{i j k}=\left\langle x_{i} x_{j} x_{k}\right\rangle_{\text {data }} \\
& f_{i_{1} \cdots i_{n}}=\left\langle x_{i_{1}} \cdots x_{i_{n}}\right\rangle_{\text {data }}
\end{aligned}
$$

\# parameters diverge too fast...

$$
E(\boldsymbol{x})=-\sum_{i} h_{i} x_{i}-\sum_{i j} J_{i j}^{(2)} x_{i} x_{j}-\sum_{i j k} J_{i j k}^{(3)} x_{i} x_{j} x_{k}-\sum_{i j k l} J_{i j k l}^{(4)} x_{i} x_{j} x_{k} x_{l}+\cdots
$$

Encoding high-order correlations

But in real data the interactions are sparse

Only some n-tuples of variables are correlated

$$
\begin{aligned}
& f_{i}=\left\langle x_{i}\right\rangle_{\text {data }} \\
& f_{i j}=\left\langle x_{i} x_{j}\right\rangle_{\text {data }} \\
& f_{i j k}=\left\langle x_{i} x_{j} x_{k}\right\rangle_{\text {data }}
\end{aligned}
$$

$$
f_{i_{1} \cdots i_{n}}=\left\langle x_{i_{1}} \cdots x_{i_{n}}\right\rangle_{\text {data }}
$$

\# parameters diverge too fast...

$$
E(\boldsymbol{x})=-\sum_{i} h_{i} x_{i}-\sum_{i j} J_{i j}^{(2)} x_{i} x_{j}-\sum_{i j k} J_{i j k}^{(3)} x_{i} x_{j} x_{k}-\sum_{i j k l} J_{i j k l}^{(4)} x_{i} x_{j} x_{k} x_{l}+\cdots
$$

Alternative solution: add hidden variables

$$
\begin{array}{lr}
\tau \tau= \pm 1 & \mathcal{H}\left(S_{1}, S_{2}, \tau\right)=-w \tau\left(S_{1}+S_{2}\right) \\
\underbrace{\tau}_{1}{ }^{\tau} S_{2} S_{i}= \pm 1 & \begin{array}{c}
\text { Marginal } \\
\text { probability }
\end{array} \\
S_{1}\left(S_{1}, S_{2}\right)=\frac{e^{-\mathcal{H}\left(S_{1}, S_{2}\right)}}{Z}
\end{array}
$$

$$
\begin{aligned}
\mathcal{H}=-\log \sum_{\tau= \pm 1} e^{w \tau\left(S_{1}+S_{2}\right)} & =-\log 2 \cosh \left[w\left(S_{1}+S_{2}\right)\right] \\
& =-J S_{1} S_{2}-J
\end{aligned}
$$

$$
\Rightarrow \cosh 2 w=e^{2 J}
$$

$$
J>0
$$

Alternative solution: add hidden variables

$$
\mathcal{H}\left(S_{1}, S_{2}, \tau\right)=-\tau\left(w_{1} S_{1}+w_{2} S_{2}\right)
$$

$S_{1} \quad S_{2} \quad S_{i}= \pm 1 \quad$ Marginal probability

$$
p\left(S_{1}, S_{2}\right)=\frac{e^{-\mathcal{H}\left(S_{1}, S_{2}\right)}}{Z}
$$

$$
\begin{aligned}
\mathcal{H}=-\log \sum_{\tau= \pm 1} e^{\tau\left(w_{1} S_{1}+w_{2} S_{2}\right)} & =-\log 2 \cosh \left[w_{1} S_{1}+w_{2} S_{2}\right] \\
& =-J S_{1} S_{2}-J
\end{aligned}
$$

encoding is not unique !

$$
\Rightarrow \frac{\cosh \left(w_{1}+w_{2}\right)}{\cosh \left(w_{1}-w_{2}\right)}=e^{2 J} \quad J>0 \quad 30 / 76
$$

Alternative solution: add hidden variables

$$
\mathcal{H}\left(S_{1}, S_{2}, \tau\right)=-\tau\left(w_{1} S_{1}+w_{2} S_{2}+\theta\right)+h_{1} S_{1}+h_{2} S_{2}
$$

There are even more ways to encode the same interaction if you consider biases...

Alternative solution: add hidden variables

$$
\mathcal{H}\left(S_{1}, S_{2}, S_{3}, S_{4}\right)=-\log 2 \cosh \left[w_{1} S_{1}+w_{2} S_{2}+w_{3} S_{3}+w_{4} S_{4}\right]
$$

$$
=-J_{1234}^{(4)} S_{1} S_{2} S_{3} S_{4}-J_{12}^{(2)} S_{1} S_{2}-J_{13}^{(2)} S_{1} S_{3}-J_{14}^{(2)} S_{1} S_{4}-J_{23}^{(2)} S_{2} S_{3}-J_{24}^{(2)} S_{2} S_{4}-J_{34}^{(2)} S_{3} S_{4}+C
$$

In order to encode an interaction model with at most k-body interactions we need $\mathrm{O}\left(N_{k}\right)$ hidden nodes, with N_{k} the number of non-zero $J^{(k)}$ couplings (\# parameters $\mathrm{O}\left(N_{k}\right) N$) << $\mathrm{O}\left(N^{k}\right)$

The Restricted Boltzmann Machine

-Smolensky, P. (1986)

$$
\begin{array}{r}
\mathcal{E}_{\theta}(x, \boldsymbol{\tau})=-\sum_{i a} x_{i} w_{i a} \tau_{a}-\sum_{i} \eta_{i} x_{i}-\sum_{a} \theta_{a} \tau_{a} \\
\boldsymbol{\theta}=\{W, \eta, \theta\}
\end{array}
$$

Visible : data

$$
\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5}
\end{array}
$$

Hidden : "Neurons" \rightarrow features extracted

The Restricted Boltzmann Machine

-Smolensky, P. (1986)

$$
\begin{array}{r}
\mathcal{E}_{\boldsymbol{\theta}}(x, \boldsymbol{\tau})=-\sum_{i a} x_{i} w_{i a} \tau_{a}-\sum_{i} \eta_{i} x_{i}-\sum_{a} \theta_{a} \tau_{a} \\
\boldsymbol{\theta}=\{W, \eta, \theta\}
\end{array}
$$

B3
Samples generated with the RBM

4	0	6	5	3	4	6	6	1	4	9
5	1	6	4	1	7	6	5	7	5	0
7										

Universal approximator!

Le Roux and Bengio. Neural computation (2008)

The Restricted Boltzmann Machine

-Smolensky, P. (1986)

$$
\begin{array}{r}
\mathcal{E}_{\theta}(x, \tau)=-\sum_{i a} x_{i} w_{i a} \tau_{a}-\sum_{i} \eta_{i} x_{i}-\sum_{a} \theta_{a} \tau_{a} \\
\boldsymbol{\theta}=\{W, \eta, \theta\}
\end{array}
$$

B3
Samples generated with the RBM

19871882143083046153909847954099

The RBM is much more expressive than
the BM, but can we
make it just as interpretable?

$$
\begin{aligned}
\mathcal{H}_{R B M}(\boldsymbol{v}) & =-\sum_{j} b_{j} v_{j}-\sum_{i} \ln \left(1+e^{c_{i}+\sum_{j} W_{i j} v_{j}}\right) \\
& =-\sum_{j} H_{j} v_{j}-\sum_{j_{1}>j_{2}} J_{j_{1} j_{2}}^{(2)} v_{j_{1}} v_{j_{2}}-\sum_{j_{1}>j_{2}>j_{3}} J_{j_{1} j_{2} j_{3}}^{(3)} v_{j_{1}} v_{j_{2}} v_{j_{3}}+\ldots
\end{aligned}
$$

The RBM as a model for interacting spins

From the RBM to a generalized Ising model

$$
\begin{gathered}
E_{\boldsymbol{\theta}}^{\mathrm{RBM}}(v)=-\log \left(\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(v, \boldsymbol{h})}\right) \quad \text { The RBM } \quad \begin{array}{c}
\text { Rewrite in terms of } \\
\boldsymbol{\sigma}, \boldsymbol{\tau} \sigma_{j}, \tau_{i} \in\{ \pm 1\}
\end{array} \\
\mathcal{H}(\boldsymbol{\sigma})=-\sum_{j} \eta_{j} \sigma_{j}-\sum_{i} \ln \cosh \left(\sum_{j} w_{i j} \sigma_{j}+\theta_{i}\right) .
\end{gathered}
$$

From the RBM to a generalized Ising model

$$
\begin{aligned}
E_{\boldsymbol{\theta}}^{\mathrm{RBM}}(v)= & \left.-\log \left(\sum_{\boldsymbol{h}} e^{-\mathcal{E}_{\boldsymbol{\theta}}(v, \boldsymbol{h})}\right) \quad \text { The RBM } \begin{array}{c}
\text { Rewrite in terms of } \\
\boldsymbol{\sigma}, \boldsymbol{\tau} \quad \sigma_{j}, \tau_{i} \in\{ \pm 1\}
\end{array}\right] \\
\mathcal{H}(\boldsymbol{\sigma}) & =-\sum_{j} \eta_{j} \sigma_{j}-\sum_{i} \ln \cosh \left(\sum_{j} w_{i j} \sigma_{j}+\zeta_{i}\right) \\
& =-\sum_{j} \eta_{j} \sigma_{j}-\sum_{\sigma^{\prime}} \prod_{j} \delta_{\sigma_{j} \sigma_{j}^{\prime}} \sum_{i} \ln \cosh \left(\sum_{j} w_{i j} \sigma_{j}^{\prime}+\zeta_{i}\right) . \\
& =-\sum_{j} \eta_{j} \sigma_{j}-\frac{1}{2^{N_{\mathrm{v}}}} \sum_{\boldsymbol{\sigma}^{\prime}} \prod_{j}\left(1+\sigma_{j} \sigma_{j}^{\prime}\right) \sum_{i} \ln \cosh \left(\sum_{j} w_{i j} \sigma_{j}^{\prime}+\zeta_{i}\right) \\
& =-\sum_{j} H_{j} \sigma_{j}-\sum_{j_{1}>j_{2}} J_{j_{1} j_{2}}^{(2)} \sigma_{j_{1}} \sigma_{j_{2}}-\sum_{j_{1}>j_{2}>j_{3}} J_{j_{1} j_{2} j_{3}}^{(3)} \sigma_{j_{1}} \sigma_{j_{2}} \sigma_{j_{3}}-\cdots
\end{aligned}
$$

From the RBM to a generalized Ising model

$$
\begin{gathered}
E_{\boldsymbol{\theta}}^{\mathrm{RBM}}(v)=-\log \left(\sum_{h} e^{-\mathcal{E}_{\boldsymbol{\theta}}(v, \boldsymbol{h})}\right) \quad \text { The RBM } \quad \begin{array}{l}
\text { Rewrite in terms of } \\
\boldsymbol{\sigma}, \boldsymbol{\tau} \sigma_{j}, \tau_{i} \in\{ \pm 1\}
\end{array} \\
\mathcal{H}(\boldsymbol{\sigma})=-\sum_{j} H_{j} \sigma_{j}-\sum_{j_{1}>j_{2}} J_{j_{1} j_{2}}^{(2)} \sigma_{j_{1}} \sigma_{j_{2}}-\sum_{j_{1}>j_{2}>j_{3}} J_{j_{1} j_{2} j_{3}}^{(3)} \sigma_{j_{1}} \sigma_{j_{2}} \sigma_{j_{3}}-\cdots
\end{gathered}
$$

Given an
RBM, we know which effective Using Model it corresponds to

$$
\begin{gathered}
H_{j}=\eta_{j}+\frac{1}{2^{N_{v}}} \sum_{\sigma^{\prime}} \sum_{i} \sigma_{j}^{\prime} \ln \cosh \left(\sum_{k} w_{i k} \sigma_{k}^{\prime}+\zeta_{i}\right) \\
J_{j_{1} \ldots j_{n}}^{(n)}=\frac{1}{2^{N_{v}}} \sum_{\sigma^{\prime}} \sum_{i} \sigma_{j_{1}}^{\prime} \ldots \sigma_{j_{n}}^{\prime} \ln \cosh \left(\sum_{k} w_{i k} \sigma_{k}^{\prime}+\zeta_{i}\right)
\end{gathered}
$$

From the RBM to a generalized Ising model

Introduce the random variable

$$
X_{i}^{\left(j_{1} \ldots j_{n}\right)} \equiv \sum_{\mu=n+1}^{N_{\mathrm{v}}} w_{i j_{\mu}} \sigma_{j_{\mu}}^{\prime}
$$

Central limit theorem

$$
\begin{gathered}
H_{j}=\eta_{j}+\frac{1}{2} \sum_{i} \mathbb{E}_{X_{i}^{(j)}}\left[\ln \frac{\cosh \left(\zeta_{i}+w_{i j}+X_{i}^{(j)}\right)}{\cosh \left(\zeta_{i}-w_{i j}+X_{i}^{(j)}\right)}\right] \\
J_{j_{1} j_{2}}^{(2)}=\frac{1}{4} \sum_{i} \mathbb{E}_{X_{i}^{\left(j_{1} j_{2}\right)}}\left[\ln \frac{\cosh \left(\zeta_{i}+w_{i j_{1}}+w_{i j_{2}}+X_{i}^{\left(j_{1} j_{2}\right)}\right) \times \cosh \left(\zeta_{i}-\left(w_{i j_{1}}+w_{i j_{2}}\right)+X_{i}^{\left(j_{1} j_{2}\right)}\right)}{\cosh \left(\zeta_{i}+\left(w_{i j_{1}}-w_{i j_{2}}\right)+X_{i}^{\left(j_{1} j_{2}\right)}\right) \times \cosh \left(\zeta_{i}-\left(w_{i j_{1}}-w_{i j_{2}}\right)+X_{i}^{\left(j_{1} j_{2}\right)}\right)}\right]
\end{gathered}
$$

Numerical controlled experiments

$$
n_{m}
$$

$$
\beta=\frac{1}{T}
$$

Generate equilibrium samples With a known model

1
Generate a dataset of generalized Ising model (GIM) equilibrium samples
$H_{j}^{*}, J_{j_{1} \cdots j_{n}}^{*,(n)}$
Pipeline of the numerical test

Decelle, Furtlehner, Navas Gómez, Seoane, arXiv:2309.02292

$$
W, b, h
$$

Infer the effective couplings out of the trained RBM models
$H_{j}(\boldsymbol{W}, \boldsymbol{b}, \boldsymbol{h}), J_{j_{1} \cdots j_{n}}^{(n)}(\boldsymbol{W}, \boldsymbol{b}, \boldsymbol{h})$

Disordered 2D Ising Model

-0.3	$-\beta=-0.2$	-0.1	0	0.1	$\beta=0.2$	0.3

"Experimental test"

$\beta J_{j_{1} j_{2}}^{*(2)}$
Coupling matrix
used to generate the samples

$$
\Delta_{J^{(2)}}=\sqrt{\frac{\sum_{j_{1}>j_{2}}\left(J_{j_{1} j_{2}}^{(2)}-\beta J_{j_{1} j_{2}}^{*(2)}\right)^{2}}{\sum_{j_{1}>j_{2}} \beta J_{j_{1} j_{2}}^{*(2)^{2}}}}
$$

We want to recover:

- The connectivity network
- The coupling strength

1D Ising model $\beta=0.2$

M				
$\square 10^{3} \quad \square 10^{4} \quad \square 10^{5} \quad \square$				

1D Ising model $\beta=0.2$

Quality comparable to standard pairwise methods
(d)

1D Ising + 3-body interactions

(b)

(d)

2D Ising model

Ferromagnetic 2D Ising Model

Previous attempts

G. Cossu, L. Del Debbio, T. Giani, A. Khamseh and M. Wilson, Phys. Rev. B (2019)

Previous attempts

N. Bulso and Y. Roudi, Neural Computation (2021)

Equivalence between the RBM and a lattice gas model $v_{i}=\{0,1\}$

(c1)
3-Body Couplings

(c2)

Beyond Ising spins

From Ising to Potts

One can generalize to Potts variables

Visible Layer
$\mathcal{H}_{R B M}(\boldsymbol{v}, \boldsymbol{h})=-\sum_{i=1}^{N_{h}} \sum_{j=1}^{N_{v}} \sum_{a=1}^{q} h_{i} W_{i j}^{a} \delta_{a v_{j}}-\sum_{j=1}^{N_{v}} \sum_{a=1}^{q} b_{j}^{a} \delta_{a v_{j}}-\sum_{i=1}^{N_{h}} c_{i} h_{i}$.

$$
\begin{aligned}
\mathcal{H}_{\mathrm{RBM}}(\boldsymbol{v}) & =-\sum_{j} \sum_{a} b_{j}^{a} \delta_{a v_{j}}-\sum_{i} \ln \sum_{h_{i}} \exp \left(c_{i} h_{i}+h_{i} \sum_{j} \sum_{a} W_{i j}^{a} \delta_{a v_{j}}\right) \\
& =-\sum_{i} \kappa_{i}^{(0)}-\sum_{j} \sum_{a}\left(b_{j}^{a}+\sum_{i} \kappa_{i}^{(1)} W_{i j}^{a}\right) \delta_{a v_{j}}-\sum_{k>1} \frac{1}{k!} \sum_{j_{1}, \ldots, j_{k}} \sum_{a_{1}, \ldots, a_{k}}\left(\sum_{i} \kappa_{i}^{(k)} W_{i j_{1}}^{a_{1}} \cdots W_{i j_{k}}^{a}\right) \delta_{a_{1} v_{j_{1}}} \cdots \delta_{a_{k} j_{j_{k}}}
\end{aligned}
$$

From Ising to Potts

We can use it to infer

$$
J_{i_{1} \cdots i_{n}}^{q_{1}, \cdots q_{n}}(\boldsymbol{\omega}, \boldsymbol{\eta}, \boldsymbol{\theta})
$$

$$
\begin{aligned}
\mathcal{H}_{\mathrm{RBM}}(\boldsymbol{v}) & =-\sum_{j} \sum_{a} b_{j}^{a} \delta_{a v_{j}}-\sum_{i} \ln \sum_{h_{i}} \exp \left(c_{i} h_{i}+h_{i} \sum_{j} \sum_{a} W_{i j}^{a} \delta_{a v_{j}}\right) \\
& =-\sum_{i} \kappa_{i}^{(0)}-\sum_{j} \sum_{a}\left(b_{j}^{a}+\sum_{i} \kappa_{i}^{(1)} W_{i j}^{a}\right) \delta_{a v_{j}}-\sum_{k>1} \frac{1}{k!} \sum_{j_{1}, \ldots, j_{k} a_{1}, \ldots, a_{k}}\left(\sum_{i} \kappa_{i}^{(k)} W_{i j_{1}}^{a_{1}} \cdots W_{i j_{k}}^{a_{k}}\right) \delta_{a_{1} v_{j}} \cdots \delta_{a_{k} v_{j_{k}}}
\end{aligned}
$$

Main difficulty: gauge symmetry

$$
\begin{array}{cl}
\mathcal{H}_{R B M}(\boldsymbol{v}, \boldsymbol{h})=-\sum_{i=1}^{N_{h}} \sum_{j=1}^{N_{v}} \sum_{a=1}^{q} h_{i} W_{i j}^{a} \delta_{a v_{j}}-\sum_{j=1}^{N_{v}} \sum_{a=1}^{q} b_{j}^{a} \delta_{a v_{j}}-\sum_{i=1}^{N_{h}} c_{i} h_{i} . \\
\begin{array}{cl}
\text { Invariant } \\
\text { under the } \\
\text { transformation }
\end{array} & W_{i j}^{a} \rightarrow W_{i j}^{a}+A_{i j} \rightarrow b_{j}^{a}+B_{j} \\
& c_{i} \rightarrow c_{i}-\sum_{j} A_{i j}
\end{array}
$$

The gauge transformation changes all orders of interaction!
And the zero sum gauge in the RBM is not equivalent to the zero sum gauge in the effective Potts model

Blume-Emery-Griffiths Model model

Model for liquid ${ }^{4} \mathrm{He}-{ }^{3} \mathrm{He}$ mixtures,

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{BEG}}=-J \sum_{\left\langle j_{1} j_{2}\right\rangle} \sigma_{j_{1}} \sigma_{j_{2}}-D \sum_{j} \sigma_{j}^{2}-h \sum_{j} \sigma_{j} \quad \sigma_{j} \in\{-1,0,1\} \\
& \mathcal{H}_{\text {Potts }}^{(2)}=-\sum_{j_{1}<j_{2}} \sum_{a_{1}, a_{2}} J_{j_{1} j_{2}}^{*(2)}{ }^{a_{1} a_{2}} \delta_{a_{1} v_{j_{1}}} \delta_{a_{2} v_{j_{2}}}-\sum_{j} \sum_{a} H_{j}^{* a} \delta_{a_{j}} \\
& \begin{array}{c}
\sigma_{j}=-1 \leftrightarrow v_{j}=1 \\
\sigma_{j}=1 \leftrightarrow v_{j}=2 \\
\sigma_{j}=0 \leftrightarrow v_{j}=3,
\end{array}
\end{aligned}
$$

Blume-Emery-Griffiths Model model

$$
J_{j_{1} j_{2}}^{a_{1} a_{1}}= \begin{cases}J & \text { if } a_{1}=a_{2}=1 \\ J & \text { if } a_{1}=a_{2}=-1 \\ -J & \text { if } a_{1}=-1, a_{2}=1 \\ -J & \text { if } a_{1}=1, a_{2}=-1 \\ 0 & \text { if } a_{1}=0 \text { or } a_{2}=0\end{cases}
$$

Analyzing the free energy landscape

Free energy landscape

- We want to use this landscape to get a notion also to identify groups of similar sequences
- We want to obtain $f(\boldsymbol{M})$ as a function of the probability of having variables \boldsymbol{v} and \boldsymbol{h} activated

$$
M=\left\{\left\{\boldsymbol{f}_{i}^{q}\right\},\left\{\boldsymbol{m}_{a}\right\}\right\}
$$

- $\log Z=\log \sum_{\boldsymbol{M}} e^{-N f(\boldsymbol{M})} \Rightarrow$ Find the \boldsymbol{M} s with lower $f(\boldsymbol{M})$

Approximate the free energy

- We use the Plefka expansion to approximate $f(\boldsymbol{M})$

$$
\begin{aligned}
& \quad f_{\beta}^{(2)}(\boldsymbol{M})=f_{0}(\boldsymbol{M})+\left.\beta \frac{\partial f_{\beta}(\boldsymbol{M})}{\partial \beta}\right|_{\beta=0}+\left.\frac{\beta^{2}}{2} \frac{\partial^{2} f_{\beta}(\boldsymbol{M})}{\partial \beta^{2}}\right|_{\beta=0} \\
& =\sum_{i q} f_{i}^{q} a_{i}^{q}+\sum_{\mu} m_{\mu} b_{\mu}-\sum_{i q} f_{i}^{q} \log f_{i}^{q}-\sum_{\mu} m_{\mu} \log m_{\mu}+\left(1-m_{\mu}\right) \log \left(1-m_{\mu}\right)+\beta \sum_{i q \mu} f_{1}^{q} w_{i \mu}^{q} m_{\mu}+\frac{\beta^{2}}{2} \sum_{\mu}\left(m_{\mu}-m_{\mu}^{2}\right) \sum_{i q}\left(w_{i \mu}^{q} 2\right)^{2} f_{i}^{q}-\sum_{i} \sum_{q} w_{\mu \mu}^{q} f_{i}^{q} .
\end{aligned}
$$

- Minima $\boldsymbol{\nabla} f(\boldsymbol{M})=\mathbf{0} \Rightarrow$ set of self-consistent equations (TAP eqs.)

$$
\begin{aligned}
& m_{\mu}[t+1] \leftarrow \operatorname{sigmoid}\left[b_{\mu}+\sum_{i q} f_{i}^{q}[t] w_{i \mu}^{q}+\left(m_{\mu}[t]-\frac{1}{2}\right)\left(\sum_{i}\left(\sum_{q} f_{i}^{q}[t] w_{i \mu}^{q}\right)^{2}-\sum_{i q}\left(w_{i \mu}^{q}\right)^{2} f_{i}^{q}[t]\right)\right] \\
& f_{i}^{q}[t+1] \leftarrow \operatorname{softmax}_{q}\left[a_{i}^{q}+\sum m_{\mu}[t+1] w_{i \mu}^{q}+\sum\left(m_{\mu}[t+1]-m_{\mu}^{2}[t+1]\right)\left(\frac{1}{2}\left(w_{i \mu}^{q}\right)^{2}-w_{i \mu}^{q} \sum_{p} f_{i}^{p}[t] w_{i \mu}^{p}\right)\right]
\end{aligned}
$$

Solve iteratively

Approximate the free energy

1 principal component

- Minima $\boldsymbol{\nabla} f(\boldsymbol{M})=\mathbf{0} \quad \Rightarrow$ set of self-consistent equations (TAP eqs.)
$m_{\mu}[t+1] \leftarrow \operatorname{sigmoid}\left[b_{\mu}+\sum_{i q} f_{i}^{q}[t] w_{i \mu}^{q}+\left(m_{\mu}[t]-\frac{1}{2}\right)\left(\sum_{i}\left(\sum_{q} f_{i}^{q}[t] w_{i \mu}^{q}\right)^{2}-\sum_{i q}\left(w_{i \mu}^{q}\right)^{2} f_{i}^{q}[t]\right)\right]$
$f_{i}^{q}[t+1] \leftarrow \operatorname{softmax}_{q}\left[a_{i}^{q}+\sum m_{\mu}[t+1] w_{i \mu}^{q}+\sum\left(m_{\mu}[t+1]-m_{\mu}^{2}[t+1]\right)\left(\frac{1}{2}\left(w_{i \mu}^{q}\right)^{2}-w_{i \mu}^{q} \sum_{p} f_{i}^{p}[t] w_{i \mu}^{p}\right)\right]$
Solve iteratively

Basin of attraction: class Fixed point: "representative" features

1 principal component

- Minima $\boldsymbol{\nabla} f(\boldsymbol{M})=\mathbf{0} \Rightarrow$ set of self-consistent equations (TAP eqs.)
$m_{\mu}[t+1] \leftarrow \operatorname{sigmoid}\left[b_{\mu}+\sum_{i q} f_{i}^{q}[t] w_{i \mu}^{q}+\left(m_{\mu}[t]-\frac{1}{2}\right)\left(\sum_{i}\left(\sum_{q} f_{i}^{q}[t] w_{i \mu}^{q}\right)^{2}-\sum_{i q}\left(w_{i \mu}^{q}\right)^{2} f_{i}^{q}[t]\right)\right]$
$f_{i}^{q}[t+1] \leftarrow \operatorname{softmax}_{q}\left[a_{i}^{q}+\sum m_{\mu}[t+1] w_{i \mu}^{q}+\sum\left(m_{\mu}[t+1]-m_{\mu}^{2}[t+1]\right)\left(\frac{1}{2}\left(w_{i \mu}^{q}\right)^{2}-w_{i \mu}^{q} \sum_{p} f_{i}^{p}[t] w_{i \mu}^{p}\right)\right]$
Solve iteratively

Data has a hierarchical organization

In order to be expressive enough, the RBM must describe all possible levels of similarity

The closest fixed point might be too detailed to be useful for a general classification

Data has a hierarchical organization

In order to be expressive enough, the RBM must describe all possible levels of similarity

The closest fixed point might be too detailed to be useful for a general classification

How do we detect larger basins?

The RBM learns in an hierarchical way

The RBM learns in an hierarchical way

Hierarchical

Clustering

Hierarchical
 Clustering

A)

B)

Example: synthetic evolutionary data

A)
N_{v}

$$
\mathbf{M} \left\lvert\, \begin{array}{ccccccccc}
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & \ldots & 0 & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 0 & 0 & \ldots & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 & 1 & 0 & 1
\end{array}\right.
$$

B)

C)

Example: synthetic evolutionary data

A)
$\mathbf{M} \left\lvert\, \begin{array}{ccccccccc}0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & \ldots & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & 0 & \ldots & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \ldots & 0 & 1 & 0 & 1\end{array}\right.$
B)

N

C)

Synthetic data

Real tree

1 principal component

Synthetic data

Hierarchical Clustering

MNIST data

| 3 | 8 | 6 | 9 | 6 | 4 | 5 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 0 | 5 | 9 | 7 | 4 | 1 |
| 1 | 3 | 6 | 8 | 0 | 7 | 7 | 6 |
| 8 | 4 | 4 | 1 | 2 | 9 | 8 | 1 |

Digit

Hierarchical
 Clustering

Protein function classification

ProfileView classification
\square CRY Pro
\square NCRY
\square Class III CPD photolyase
\square Class II CPD photolyase
\square Plant-like photoreceptor CRY
\square Animal photoreceptor CRY
\square CRY DASH
\square (6-4) photolyase
\square Trans. regulators
\square N/A
\square Plant photoreceptor CRY
\square Class I CPD photolyase

Experimental classification

Hierarchical

Clustering

Conclusions

- RBMs are both expressive and simple
- The are as interpretable as the Boltzmann Machines
- They can be used to infer multi-body interactions without blowing the number of parameters
- We have mappings between the:
- Bernouilli-Bernoulli RBM \rightarrow Generalized Ising model
- Bernouilli-Potts RBM \rightarrow Generalized Potts model (still testing)
- We can use the RBM for hierarchical clustering

Aurélien Decelle Giovanni Catania

Alfonso Navas
Lorenzo Rosset

Nicolas Béreux
Cyril Furtlehner

Decelle, Furtlehner, Navas, Seoane, arXiv: 2309.02292 SciPost 2024

