Luminosity estimations for ELISE and DERICA projects

Petr Shatunov, BINP, Novosibirsk

20 of July 2018, Trento, Italy

ONA

ELISE: collider layout

Interection Region and Electron Ring

Structure Funtions

Modified ESR

Common

Energy (max): 485.35 MeV/u β_{i} (max): 0.7535 A/Z: 2.7 Rigidity: 10 T·m Bends: $6 \cdot 60^{\circ}$ Straights: 8 m BetaX(IP): 15 cm BetaZ(IP): 150 cm **Stretched** Circumference ion: 141.5 m Circumference electron: 37.6 m Additions: 8 guads **Triangular** Circumference ion: 173.56 m Circumference electron:46.1 m Additions: 12 guads

β _i	T(MeV/u)	n _e ∙n _i (Str)	n _e ∙n _i (Tri)
0.753	485.35	7×35	8×40
0.628	265.37	7×42	8×48
0.538	173.73	6×42	7×49
0.471	124.42	6×48	7×56

Bernhard Franzke

$$F_{i} \cdot n_{i} = F_{e} \cdot n_{e}$$

$$\sigma_{x,z} = \sqrt{\epsilon_{x,z} \cdot \beta_{x,z}}$$

$$L = F_e n_e \frac{N_{eb} N_{ib}}{4\pi \sigma_x \sigma_z}$$

$$\epsilon_{x} = \epsilon_{z} \quad \nu_{x} = \nu_{z}$$
$$\beta_{x} \neq \beta_{z}$$

Beam-beam limitation

$$\xi_{ix} = \frac{Z}{A} \cdot \frac{N_{eb}r_p\beta_x}{2\pi\gamma_i\beta_i(\sigma_x + \sigma_z)\sigma_x}$$
$$\xi_{iz} = \frac{Z}{A} \cdot \frac{N_{eb}r_p\beta_z}{2\pi\gamma_i\beta_i(\sigma_x + \sigma_z)\sigma_z}$$

$$\xi_{ix} \approx 0.03 \div 0.05$$

$$F_{i} \cdot n_{i} = F_{e} \cdot n_{e}$$

$$\sigma_{x,z} = \sqrt{\epsilon_{x,z} \cdot \beta_{x,z}}$$

$$L = F_e n_e \frac{N_{eb} N_{ib}}{4\pi \sigma_x \sigma_z}$$

$$\begin{aligned} \mathbf{\epsilon}_{x} = \mathbf{\epsilon}_{z} \quad \mathbf{v}_{x} = \mathbf{v}_{z} \\ \mathbf{\beta}_{x} \neq \mathbf{\beta}_{z} \end{aligned}$$

Beam-beam limitation

$$\xi_{ix} = \frac{Z}{A} \cdot \frac{N_{eb}r_p\beta_x}{2\pi\gamma_i\beta_i(\sigma_x + \sigma_z)\sigma_x}$$
$$\xi_{iz} = \frac{Z}{A} \cdot \frac{N_{eb}r_p\beta_z}{2\pi\gamma_i\beta_i(\sigma_x + \sigma_z)\sigma_z}$$

$$\xi_{ix} \approx 0.03 \div 0.05$$

$$L_{\xi} = F_i n_i \cdot \frac{A}{Z} \cdot \left(1 + \frac{\sigma_z}{\sigma_x}\right) \cdot \frac{N_{ib} \xi_{ix} \gamma_i \beta_i}{2r_p \sqrt{\beta_x \beta_z}}$$

$$L_{\xi} \sim F_i N_{ib} n_i$$

$$F_i \cdot n_i = F_e \cdot n_e$$

$$\sigma_{x,z} = \sqrt{\epsilon_{x,z} \cdot \beta_{x,z}}$$

$$L = F_e n_e \frac{N_{eb} N_{ib}}{4\pi \sigma_x \sigma_z}$$

$$\epsilon_{x} = \epsilon_{z} \quad \nu_{x} = \nu_{z}$$
$$\beta_{x} \neq \beta_{z}$$

Beam-beam limitation

$$\xi_{ix} = \frac{Z}{A} \cdot \frac{N_{eb}r_p\beta_x}{2\pi\gamma_i\beta_i(\sigma_x + \sigma_z)\sigma_x}$$
$$\xi_{iz} = \frac{Z}{A} \cdot \frac{N_{eb}r_p\beta_z}{2\pi\gamma_i\beta_i(\sigma_x + \sigma_z)\sigma_z}$$

$$\xi_{ix} \approx 0.03 \div 0.05$$

$$L_{\xi} = F_i n_i \cdot \frac{A}{Z} \cdot \left(1 + \frac{\sigma_z}{\sigma_x}\right) \cdot \frac{N_{ib} \xi_{ix} \gamma_i \beta_i}{2r_p \sqrt{\beta_x \beta_z}}$$

Space charge limitation

$$\begin{split} \Delta\nu &= \frac{Z^2}{A} \cdot \frac{N_{ib}r_p}{\gamma_i^3\beta_i^2\varepsilon} \cdot \frac{R}{2\sqrt{2\pi}\sigma_s} \\ \varepsilon &= \frac{Z^2}{A} \cdot \frac{N_{ib}r_p}{\gamma_i^3\beta_i^2\Delta\nu} \cdot \frac{R}{2\sqrt{2\pi}\sigma_s} \end{split}$$

$$\Delta \nu \approx 0.08 \div 0.1$$

$$L_{\xi} \sim F_i N_{ib} n_i$$

$$F_{i} \cdot n_{i} = F_{e} \cdot n_{e}$$

$$\sigma_{x,z} = \sqrt{\epsilon_{x,z} \cdot \beta_{x,z}}$$

$$L = F_e n_e \frac{N_{eb} N_{ib}}{4\pi \sigma_x \sigma_z}$$

$$\begin{aligned} \mathbf{\epsilon}_{x} = \mathbf{\epsilon}_{z} \quad \mathbf{v}_{x} = \mathbf{v}_{z} \\ \mathbf{\beta}_{x} \neq \mathbf{\beta}_{z} \end{aligned}$$

Beam-beam limitation

$$\xi_{ix} = \frac{Z}{A} \cdot \frac{N_{eb}r_p\beta_x}{2\pi\gamma_i\beta_i(\sigma_x + \sigma_z)\sigma_x}$$
$$\xi_{iz} = \frac{Z}{A} \cdot \frac{N_{eb}r_p\beta_z}{2\pi\gamma_i\beta_i(\sigma_x + \sigma_z)\sigma_z}$$

$$\xi_{ix} \approx 0.03 \div 0.05$$

Space charge limitation

$$\begin{split} \Delta\nu &= \frac{Z^2}{A} \cdot \frac{N_{ib}r_p}{\gamma_i^3\beta_i^2\varepsilon} \cdot \frac{R}{2\sqrt{2\pi}\sigma_s} \\ \varepsilon &= \frac{Z^2}{A} \cdot \frac{N_{ib}r_p}{\gamma_i^3\beta_i^2\Delta\nu} \cdot \frac{R}{2\sqrt{2\pi}\sigma_s} \end{split}$$

$$\bigtriangleup \nu \approx 0.08 \div 0.1$$

$$L_{\xi} = F_i n_i \cdot \frac{A}{Z} \cdot \left(1 + \frac{\sigma_z}{\sigma_x}\right) \cdot \frac{N_{ib} \xi_{ix} \gamma_i \beta_i}{2r_p \sqrt{\beta_x \beta_z}}$$

$$L_{Ne} = F_e n_e \frac{A}{Z^2} \cdot \frac{N_{eb} \Delta \nu \gamma_i^3 \beta_i^2}{4\pi r_p \sqrt{\beta_x \beta_z}} \cdot \frac{2\sqrt{2\pi}\sigma_s}{R}$$

$$L_{\xi} \sim F_i N_{ib} n_i$$

$$L_{_{Ne}}$$
~const

Luminosity: ELISE

Element	А	Z	Ni _{stored}
Be	11	4	2.1·10 ¹⁰
U	248.4	92	4·10 ⁸

40×8

 $N_{e} \approx 5 \cdot 10^{10}$

Luminosity: ELISE

	Element	А	Z	Ni _{stored}
$N_e^{} \approx 5 \cdot 10^{10}$	Be	11	4	2.1·10 ¹⁰
	U	248.4	92	4·10 ⁸

40×8

Luminosity: ELISE

	Element	А	Z	Ni _{stored}
$N_e^{} \approx 5 \cdot 10^{10}$	Be	11	4	2.1·10 ¹⁰
	U	248.4	92	4·10 ⁸

40×8

Luminosity: Energy scaling

Beam-beam limitation

Space charge limitation

$$L_{\xi} = F_i n_i \cdot \frac{A}{Z} \cdot \left(1 + \frac{\sigma_z}{\sigma_x}\right) \cdot \frac{N_{ib} \xi_{ix} \gamma_i \beta_i}{2r_p \sqrt{\beta_x \beta_z}}$$

$$L_{Ne} = F_e n_e \frac{A}{Z^2} \cdot \frac{N_{eb} \Delta \nu \gamma_i^3 \beta_i^2}{4\pi r_p \sqrt{\beta_x \beta_z}} \cdot \frac{2\sqrt{2\pi}\sigma_s}{R}$$

$$F_{i,e} \cdot n_{i,e} = \frac{C}{l_p} \cdot \frac{\beta_i}{1 + \beta_i}$$

$$L_{\xi} \sim \frac{\gamma_i \beta_i^2}{1 + \beta_i}$$

$$L_{Ne} \sim \frac{\gamma_i^3 \beta_i^3}{1 + \beta_i}$$

Luminosity comparison

	¹¹ Be ⁴⁺	^{248.4} U ⁹²⁺	Circumference	Energy MeV/u	Bunches
ELISE	2.1·10 ¹⁰	4·10 ⁸	222.9 m	740.0	8×40
MESR	2.1.1010	4·10 ⁸	173.56 m	485.35	8×40
DERICA	1.5·10 ¹⁰	-	222.9 m	300.0	11×55

Luminosity comparison

	¹¹ Be ⁴⁺	248.4U92+	Circumference	Energy MeV/u	Bunches
ELISE	2.1.1010	4·10 ⁸	222.9 m	740.0	8×40
MESR	2.1·10 ¹⁰	4·10 ⁸	173.56 m	485.35	8×40
DERICA	1.5·10 ¹⁰	-	222.9 m	300.0	11×55

Luminosity comparison

	¹¹ Be ⁴⁺	248.4 U92+	Circumference	Energy MeV/u	Bunches
ELISE	2.1.1010	4·10 ⁸	222.9 m	740.0	8×40
MESR	2.1.1010	4·10 ⁸	173.56 m	485.35	8×40
DERICA	1.5·10 ¹⁰	-	222.9 m	300.0	11×55

Possible improvements: Circumference

$$L_{Ne} = F_e n_e \frac{A}{Z^2} \cdot \frac{N_{eb} \Delta \nu \gamma_i^3 \beta_i^2}{4\pi r_p \sqrt{\beta_x \beta_z}} \cdot \frac{2\sqrt{2\pi} \sigma_s}{R}$$

Possible improvements: Circumference

Factor 2x

$$L_{Ne} = F_e n_e \frac{A}{Z^2} \cdot \frac{N_{eb} \Delta \nu \gamma_i^3 \beta_i^2}{4\pi r_p \sqrt{\beta_x \beta_z}} \cdot \frac{2\sqrt{2\pi}\sigma_s}{R}$$

Possible improvements: Circumference

Factor 2x

$$L_{Ne} = F_e n_e \frac{A}{Z^2} \cdot \frac{N_{eb} \Delta \nu \gamma_i^3 \beta_i^2}{4\pi r_p \sqrt{\beta_x \beta_z}} \cdot \frac{2\sqrt{2\pi}\sigma_s}{R}$$

Disadvantages

- Less room for all needed experiments
- Maintenance prices increase Advantages
- Reduced construction price
- Full size electron ring

Coherent betatron tunes simulation for 1×6 bunches Alexand Valishev

1

0.5

0.75

 \mathcal{V}_{z}

0.25

Possible improvements: Interaction region

$$L_{Ne} = F_e n_e \frac{A}{Z^2} \cdot \frac{N_{eb} \Delta \nu \gamma_i^3 \beta_i^2}{4\pi r_p \beta_x \beta_z} \cdot \frac{2\sqrt{2\pi}\sigma_s}{R}$$

$$\beta = \beta_0 + \frac{s^2}{\beta_0}$$
BetaZ (IP): 15 cm - 1 cm?

Electron Spectrometer Alternative

Disadvantages

- Complicated design
- Increased cost
- Supercoductivity

Advantages

- Angle 10° , 75°
- Tight integration with Final Focusing
- Increased luminocity by factor of 3 ÷ 5
- Increased $F_i n_i$
- Supercoductivity

Ivan Koop

Thank You!