Dipole response in exotic nuclei

Takashi Nakatsukasa Center for Computational Sciences Univ. of Tsukuba

2018.7.16 – 20 ECT* workshop on Probing exotic structure of short-lived nuclei by electron scattering @Trento, Italy

Contents

- Time-dependent approaches to nuclear response
- Dipole response in neutron-halo systems
- Dipole response in medium-heavy exotic nuclei

• I do not talk about correlations with symmetry energy, slope parameter, etc.

Time-dependent approach

Time-dependent equation

- $i\hbar \frac{\partial}{\partial t} \psi(\vec{r},t) = H\psi(\vec{r},t)$ Use of a wave-packet wave function
 - Superposition of many energy eigenstates
 - Energy resolution is limited by time duration
- Especially useful for investigation of bulk properties and continuum (scattering) states.

Dipole response of weakly-bound nuclei at low excitation

⁶He, ¹¹Li

Nakatsukasa, Yabana, Ito, Eur. Phys. J. Special Topics 156, 249–256 (2008)

We can rewrite E1 strength function as

$$\frac{dB(E1,E)}{dE} = \sum_{lm'} \int dE' \delta(E-E') \left| \left\langle \phi_{E',l=1,m'} \left| M_{1m} \right| \phi_0 \right\rangle \right|^2$$
$$= \left\langle \phi_0 \left| M_{1m}^+ \delta(E-H) M_{1m} \right| \phi_0 \right\rangle$$
$$= -\frac{1}{\pi} \operatorname{Im} \left\langle \phi_0 \left| M_{1m}^+ \frac{1}{E+i\varepsilon - H} M_{1m} \right| \phi_0 \right\rangle$$

$$\frac{dB(E1,E)}{dE} = -\frac{1}{\pi} \operatorname{Im} \sum_{m} \frac{1}{i\hbar} \int_{0}^{\infty} dt e^{iEt/\hbar} \left\langle \phi_{0} \left| M_{1m}^{+} e^{-iHt/\hbar} M_{1m} \right| \phi_{0} \right\rangle \right\rangle$$

$$\left\langle \psi(0) \right| \quad |\psi(t)\rangle$$

Equations to numerically solve

$$|\psi(0)\rangle = M_{1m} |\phi_0\rangle$$

$$i \frac{\partial}{\partial t} |\psi(t)\rangle = \{H - iW_{abs}\} |\phi_0\rangle$$
Continuum effect

Dipole strength of borromean nuclei: real-time calculation

3-body model

$$i\hbar\frac{\partial}{\partial t}\psi(\vec{r_{1}},\vec{r_{2}},t) = \left(-\frac{\hbar^{2}}{2m}\nabla_{r_{1}}^{2} - \frac{\hbar^{2}}{2m}\nabla_{r_{2}}^{2} + V_{nC}(r_{1}) + V_{nC}(r_{2}) + V_{nn}\left(|\vec{r_{1}} - \vec{r_{2}}|\right)\right)\psi(\vec{r_{1}},\vec{r_{2}},t)$$

 \vec{r}_2

Simplified treatment, ignoring recoil term Time representation of response function

$$\frac{dB(E1)}{dE} = \frac{1}{\pi\hbar} \operatorname{Re} \int_{0}^{\infty} dt \, e^{iEt/\hbar} \sum_{m} \int d\vec{r}_{1} d\vec{r}_{2} \psi_{1m}^{*}(\vec{r}_{1},\vec{r}_{2},0) \psi_{1m}(\vec{r}_{1},\vec{r}_{2},t)$$

Initial wave function: (Dipole operator) x (3-body ground state)

$$\psi(\vec{r}_{1}, \vec{r}_{2}, t = 0) = (z_{1} + z_{2})\phi_{0}(\vec{r}_{1}, \vec{r}_{2})$$
$$i\hbar \frac{\partial}{\partial t}\psi(\vec{r}_{1}, \vec{r}_{2}, t) = \{H - iW_{abs}(r_{1}) - iW_{abs}(r_{2})\}\psi(\vec{r}_{1}, \vec{r}_{2}, t)$$

Detail of assumed Hamiltonian and numerical method

$$i\hbar\frac{\partial}{\partial t}\psi(\vec{r_{1}},\vec{r_{2}},t) = \left(-\frac{\hbar^{2}}{2m}\nabla_{r_{1}}^{2} - \frac{\hbar^{2}}{2m}\nabla_{r_{2}}^{2} + V_{nC}(r_{1}) + V_{nC}(r_{2}) + V_{nn}\left(|\vec{r_{1}}-\vec{r_{2}}|\right)\right)\psi(\vec{r_{1}},\vec{r_{2}},t)$$

r,

$$\psi^{\mathcal{M}}(\vec{r}_{1}\sigma_{1},\vec{r}_{2}\sigma_{2},t) = \sum_{l_{1}l_{2}LS} \frac{u_{l_{1}l_{2}LS}}{r_{1}r_{2}} \left[\left[Y_{l_{1}}(\hat{r}_{1})Y_{l_{2}}(\hat{r}_{2}) \right]_{L} \left[\chi(\sigma_{1})\chi(\sigma_{2}) \right]_{S} \right]_{\mathcal{M}}$$

$$l_{1}, l_{2} \leq 10 \qquad 0 < r_{1}, r_{2} < 90 \text{ fm} \qquad W_{abs}(r) \text{ for } r > 30 \text{ fm} \qquad \Delta r = 0.6 \text{ fm}$$

Lagrange mesh (Discrete Variables Representation) for differentiation
Taylor expansion for time-evolution

Dipole Strength of ⁶He, ¹¹Li

Dipole strength from real-time calculation $\frac{dB(E1)}{dE} = \left(\frac{Z}{A}\right)^2 \frac{3}{\pi} \int dt \ e^{iEt} \langle \Phi_0 | (z_1 + z_2) | \Psi(t) \rangle$

Low strength is sensitive to the s-wave component $(1s_{1/2})^2$

Energy density functionals

- Universal description of ground and excited states
- Reasonable computational time
- Time-dependent density-functional theory to calculate nuclear response

Time-dependent density functional theory (TDDFT) for nuclei

Time-odd densities (current density, spin density, etc.)

$$E\left[\rho_{q}(t), \tau_{q}(t), \vec{J}_{q}(t), \vec{j}_{q}(t), \vec{s}_{q}(t), \vec{T}_{q}(t); \kappa_{q}(t)\right]$$

kinetic current spin-kinetic spin-current spin pair density

• Time-dependent Kohn-Sham-Bogoliubov eq.

$$i\frac{\partial}{\partial t} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix} = \begin{pmatrix} h(t) - \lambda & \Delta(t) \\ -\Delta^{*}(t) & -(h(t) - \lambda)^{*} \end{pmatrix} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix}$$

Canonical-basis TDHFB

$$i\frac{\partial}{\partial t}|k(t)\rangle = (h(t) - \eta_{k}(t))|k(t)\rangle, \quad i\frac{\partial}{\partial t}|\bar{k}(t)\rangle = (h(t) - \eta_{\bar{k}}(t))|\bar{k}(t)\rangle$$

$$i\frac{\partial}{\partial t}\rho_{k}(t) = \kappa_{k}(t)\Delta_{k}^{*}(t) - \kappa_{k}^{*}(t)\Delta_{k}(t) \qquad \rho_{k}(t) \equiv |v_{k}(t)|^{2}$$

$$i\frac{\partial}{\partial t}\kappa_{k}(t) = (\eta_{k}(t) + \eta_{\bar{k}}(t))\kappa_{k}(t) + \Delta_{k}(t)(2\rho_{k}(t) - 1) \qquad K_{k}(t) \equiv u_{k}(t)v_{k}(t)$$

 $\eta_k(t), \eta_{\bar{k}}(t)$: arbitrary real function of t

- •Conserve the particle number and the total energy
- •Conserve the orthonormality of canonical orbitals
- •Reduce to TDHF for Δ =0
- Its static limit coincides with the HF+BCS
- In the small-amplitude limit,
 - •Nambu-Goldstone modes appear as the zero-energy modes.
 - •The pairing vibrations in the normal phase coincide with the pp- and hh-RPA

$$\frac{d}{dt} \langle N \rangle = \frac{d}{dt} E_{\text{tot}} = 0$$
$$\frac{d}{dt} \langle k(t) | k'(t) \rangle = 0$$

Real-time calculation of response functions

1. Weak instantaneous external perturbation

 $V_{\rm ext}(t) = \hat{F}\delta(t)$

- 2. Calculate time evolution of $\langle \Psi(t) | \hat{F} | \Psi(t) \rangle$
- 3. Fourier transform to energy domain

$$\frac{dB(\omega;\hat{F})}{d\omega} = -\frac{1}{\pi} \operatorname{Im} \int \langle \Psi(t) | \hat{F} | \Psi(t) \rangle e^{i\omega t} dt$$

Numerical calculation with 3D coordinate mesh space with SkM* EDF

ω [MeV]

Ground-state deformation

Ebata, Nakatsukasa, Phys. Scr. 92, 064005 (2017)

Systematic calculation with SkM*

Quadrupole Deformation (# 1005)

Ground-state deformation

Ebata, Nakatsukasa, Phys. Scr. 92, 064005 (2017)

Systematic calculation with SkM*

Ground-state deformation

Rare-earth region

Deformation effects for photoabsorption cross section

Deformation in open shell

Rare-earth region

Rowe & Wood, Fundamental Nuclear models

Sudden deformation onset in Sr isotopes

Deformation in open shell

Deformation evolution

E1 oscillator strength and deformation

E1 strength in Zr isotopes

Neutron capture cross sections

Onset of deformation at N=60 Prolate to oblate/spherical at N=74 → Hindrance of PDR fraction

> K=0 dominance at the deformed region

Ebata, Inakura, Nakatsukasa, Phys. Rev. C 90, 024303 (2014)

"Magic numbers" for PDR emergence

- Magic numbers: N(Z) =14, 28, 50, 82, ...
- Extended distribution of neutrons(protons)
 - Weak binding orbitals
 - Low-/ orbitals ($\ell = 0, 1, 2, ...$)

- Magic numbers: N(Z) =14, 28, 50, 82, ...
- Extended distribution of neutrons(protons)
 - Weak binding orbitals
 - Low-/ orbitals ($\ell = 0, 1, 2, ...$)
 - Skin thickness

- Magic numbers: N(Z) =14, 28, 50, 82, ...
- Extended distribution of neutrons(protons)
 - Weak binding orbitals
 - Low-/ orbitals ($\ell = 0, 1, 2, ...$)
 - Skin thickness
 - Shell structure / effective mass

Shell structure

• Effective mass: 0.6 (SkI3), 0.8 (SkM*)

- Magic numbers: N(Z) =14, 28, 50, 82, ...
- Extended distribution of neutrons(protons)
 - Weak binding orbitals
 - Low-/ orbitals ($\ell = 0, 1, 2, ...$)
 - Skin thickness
 - Shell structure and effective mass
 - 3-body-induced (Density-dependent) spin-orbit interaction (Nakada's talk on Wednesday)

Summary

- Time-dependent approach to nuclear dynamics
 - Few-body model
 - Time-dependent density functional model
- E1 Giant resonance
 - Simple dynamics (p vs n)
 - Exotic nuclei: T-dep. of symmetry energy
- Low-energy E1 strength
 - Suitable for exotic nuclei
 - Sensitive to properties, such as skin, pairing, deformation, & shell effect