Dipole response in exotic nuclei

Takashi Nakatsukasa
Center for Computational Sciences
Univ. of Tsukuba

2018.7.16-20 ECT* workshop on Probing exotic structure of short-lived nuclei by electron scattering @Trento, Italy

Contents

- Time-dependent approaches to nuclear response
- Dipole response in neutron-halo systems
- Dipole response in medium-heavy exotic nuclei
- I do not talk about correlations with symmetry energy, slope parameter, etc.

Time-dependent approach

- Time-dependent equation

$$
i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t)=H \psi(\vec{r}, t)
$$

- Use of a wave-packet wave function
- Superposition of many energy eigenstates
- Energy resolution is limited by time duration
- Especially useful for investigation of bulk properties and continuum (scattering) states.

Dipole response of weakly-bound nuclei at low excitation

${ }^{6} \mathrm{He},{ }^{11} \mathrm{Li}$

Nakatsukasa, Yabana, Ito, Eur. Phys. J. Special Topics 156, 249-256 (2008)

We can rewrite E1 strength function as

$$
\begin{aligned}
& \left.\quad \frac{d B(E 1, E)}{d E}=\sum_{l m^{\prime}} \int d E^{\prime} \delta\left(E-E^{\prime}\right)\left|\left\langle\phi_{E^{\prime}, l, m^{\prime}}\right| M_{1 m}\right| \phi_{0}\right\rangle\left.\right|^{2} \\
& =\left\langle\phi_{0}\right| M_{1 m}^{+} \delta(E-H) M_{1 m}\left|\phi_{0}\right\rangle \\
& =-\frac{1}{\pi} \operatorname{Im}\left\langle\phi_{0}\right| M_{1 m}^{+} \frac{1}{E+i \varepsilon-H} M_{1 m}\left|\phi_{0}\right\rangle \\
& \frac{d B(E 1, E)}{d E}=-\frac{1}{\pi} \operatorname{Im} \sum_{m} \frac{1}{i \hbar} \int_{0}^{\infty} d t e^{i E t / \hbar} \frac{\left\langle\phi_{0}\right| M_{1 m}^{+} e^{-i H t / h} M_{1 m}\left|\phi_{0}\right\rangle}{\langle\psi(0)||\psi(t)\rangle}
\end{aligned}
$$

Equations to numerically solve

$$
\begin{aligned}
& |\psi(0)\rangle=M_{1 m}\left|\phi_{0}\right\rangle \\
& i \frac{\partial}{\partial t}|\psi(t)\rangle=\left\{H-i W_{a b s}\right\}\left|\phi_{0}\right\rangle
\end{aligned}
$$

Dipole strength of borromean nuclei: real-time calculation

3-body model
$i \hbar \frac{\partial}{\partial t} \psi\left(\vec{r}_{1}, \vec{r}_{2}, t\right)=\left(-\frac{\hbar^{2}}{2 m} \nabla_{r_{1}}{ }^{2}-\frac{\hbar^{2}}{2 m} \nabla_{r_{2}}{ }^{2}+V_{n c}\left(r_{1}\right)+V_{n c}\left(r_{2}\right)+V_{n n}\left(\mid \vec{r}_{1}-\vec{r}_{2}\right)\right) \psi\left(\vec{r}_{1}, \vec{r}_{2}, t\right)$
Simplified treatment, ignoring recoil term
Time representation of response function

$$
\frac{d B(E 1)}{d E}=\frac{1}{\pi \hbar} \operatorname{Re} \int_{0}^{\infty} d t e^{i E t / \hbar} \sum_{m} \int d \vec{r}_{1} d \vec{r}_{2} \psi_{1 m}^{*}\left(\vec{r}_{1}, \vec{r}_{2}, 0\right) \psi_{1 m}\left(\vec{r}_{1}, \vec{r}_{2}, t\right)
$$

Initial wave function: (Dipole operator) x (3-body ground state)

$$
\begin{aligned}
& \psi\left(\vec{r}_{1}, \vec{r}_{2}, t=0\right)=\left(z_{1}+z_{2}\right) \phi_{0}\left(\vec{r}_{1}, \vec{r}_{2}\right) \\
& i \hbar \frac{\partial}{\partial t} \psi\left(\vec{r}_{1}, \vec{r}_{2}, t\right)=\left\{H-i W_{a b s}\left(r_{1}\right)-i W_{a b s}\left(r_{2}\right)\right\} \psi\left(\vec{r}_{1}, \vec{r}_{2}, t\right)
\end{aligned}
$$

Detail of assumed Hamiltonian and numerical method

$i \hbar \frac{\partial}{\partial t} \mu\left(\bar{r}_{r}, \vec{r}_{2}, t\right)=\left(-\frac{\hbar^{2}}{2 m} \nabla_{n}{ }^{2}-\frac{\hbar^{2}}{2 m} \nabla_{2_{2}}{ }^{2}+V_{n c}\left(r_{i}\right)+V_{n c}\left(r_{2}\right)+V_{m m}\left(\vec{r}_{1}-\vec{r}_{2}\right)\right) \mu\left(\bar{r}_{1}, \vec{r}_{2}, t\right)$

Core-neutron: Central + Spin-Orbit (Woods-Saxon shape)
Neutron-neutron: Minnesota force
Orthogonality to occupied orbitals ($\mathrm{s}_{1 / 2}$ for ${ }^{6} \mathrm{He}, \mathrm{s}_{1 / 2}$ and $\mathrm{p}_{3 / 2}$ for ${ }^{11} \mathrm{Li}$) Recoil terms are ignored
Binding energy are set to 0.975 MeV for ${ }^{6} \mathrm{He}, 0.295 \mathrm{MeV}$ for ${ }^{11} \mathrm{Li}$
by adjusting depth of the central potential

$$
\begin{aligned}
& \left.\psi^{J M}\left(\vec{r}_{1} \sigma_{1}, \vec{r}_{2} \sigma_{2}, t\right)=\sum_{l_{1} L S} \frac{u_{l_{1} l_{2} L S}{ }^{J M}\left(r_{1}, r_{2}, t\right)}{r_{1} r_{2}}\left[Y_{l_{1}}\left(\hat{r}_{1}\right) Y_{l_{2}}\left(\hat{r}_{2}\right)\right]_{L}\left[\chi\left(\sigma_{1}\right) \chi\left(\sigma_{2}\right)\right]_{S}\right]_{M M} \\
& l_{1}, l_{2} \leq 10 \quad 0<r_{1}, r_{2}<90 \mathrm{fm} \quad W_{\text {abs }}(r) \text { for } r>30 \mathrm{fm} \quad \Delta r=0.6 \mathrm{fm}
\end{aligned}
$$

Lagrange mesh (Discrete Variables Representation) for differentiation Taylor expansion for time-evolution

Dipole Strength of ${ }^{6} \mathrm{He},{ }^{11} \mathrm{Li}$

Dipole strength from real-time calculation

$$
\frac{d B(E 1)}{d E}=\left(\frac{Z}{A}\right)^{2} \frac{3}{\pi} \int d t e^{i E t}\left\langle\Phi_{0}\right|\left(z_{1}+z_{2}\right)|\Psi(t)\rangle
$$

T. Aumann et.al, PRC59(1999)1252

T. Nakamura et.al, PRL96(2006)252502

Low strength is sensitive to the s -wave component $\left(1 \mathrm{~s}_{1 / 2}\right)^{2}$

Energy density functionals

- Universal description of ground and excited states
- Reasonable computational time
- Time-dependent density-functional theory to calculate nuclear response

Time-dependent density functional theory (TDDFT) for nuclei

- Time-odd densities (current density, spin density, etc.)

$$
E\left[\rho_{q}(t), \tau_{q}(t), \stackrel{\rightharpoonup}{J}_{q}(t), \vec{j}_{q}(t), \vec{s}_{q}(t), \vec{T}_{q}(t) ; \kappa_{q}(t)\right]
$$

- Time-dependent Kohn-Sham-Bogoliubov eq.

$$
i \frac{\partial}{\partial t}\binom{U_{\mu}(t)}{V_{\mu}(t)}=\left(\begin{array}{cc}
h(t)-\lambda & \Delta(t) \\
-\Delta^{*}(t) & -(h(t)-\lambda)^{*}
\end{array}\right)\binom{U_{\mu}(t)}{V_{\mu}(t)}
$$

Canonical-basis TDHFB

$$
\begin{array}{ll}
i \frac{\partial}{\partial t}|k(t)\rangle=\left(h(t)-\eta_{k}(t)\right)|k(t)\rangle, i \frac{\partial}{\partial t}|\bar{k}(t)\rangle=\left(h(t)-\eta_{\bar{k}}(t)\right)|\bar{k}(t)\rangle \\
i \frac{\partial}{\partial t} \rho_{k}(t)=\kappa_{k}(t) \Delta_{k}^{*}(t)-\kappa_{k}^{*}(t) \Delta_{k}(t) & \rho_{k}(t) \equiv\left|v_{k}(t)\right|^{2} \\
i \frac{\partial}{\partial t} \kappa_{k}(t)=\left(\eta_{k}(t)+\eta_{\bar{k}}(t)\right) \kappa_{k}(t)+\Delta_{k}(t)\left(2 \rho_{k}(t)-1\right) & K_{k}(t) \equiv u_{k}(t) v_{k}(t)
\end{array}
$$

$\eta_{k}(t), \eta_{\bar{k}}(t)$: arbitrary real function of t
-Conserve the particle number and the total energy

$$
\begin{aligned}
& \frac{d}{d t}\langle N\rangle=\frac{d}{d t} E_{\mathrm{tot}}=0 \\
& \frac{d}{d t}\left\langle k(t) \mid k^{\prime}(t)\right\rangle=0
\end{aligned}
$$

-Conserve the orthonormality of canonical orbitals
-Reduce to TDHF for $\Delta=0$
-Its static limit coincides with the HF+BCS
In the small-amplitude limit,
-Nambu-Goldstone modes appear as the zero-energy modes.
-The pairing vibrations in the normal phase coincide with the pp- and hh-RPA

Real-time calculation of response functions

1. Weak instantaneous external perturbation

$$
V_{\mathrm{ext}}(t)=\hat{F} \delta(t)
$$

2. Calculate time evolution of

$$
\langle\Psi(t)| \hat{F}|\Psi(t)\rangle
$$

3. Fourier transform to energy domain $\frac{d B(\omega ; \hat{F})}{d \omega}=-\frac{1}{\pi} \operatorname{Im} \int\langle\Psi(t)| \hat{F}|\Psi(t)\rangle e^{i \omega t} d t$ Numerical calculation with 3D coordinate mesh space with SkM^{*} EDF

Ground-state deformation

Ebata, Nakatsukasa, Phys. Scr. 92, 064005 (2017)

- Systematic calculation with SkM*

Ground-state deformation

Ebata, Nakatsukasa, Phys. Scr. 92, 064005 (2017)

- Systematic calculation with SkM*

Ground-state deformation

Rare-earth region

Deformation effects for photoabsorption cross section

SkM* functional

Deformation in open shell

Rare-earth region

50

Rowe \& Wood,
Fundamental Nuclear models

Sudden deformation onset in Sr isotopes

Rowe \& Wood,
Fundamental Nuclear models

Deformation in open shell

Deformation evolution

E1 oscillator strength and deformation

E1 strength in Zr isotopes

Neutron capture cross sections

Ebata, Inakura, Nakatsukasa, Phys. Rev. C 90, 024303 (2014)

Deformation (p,n)

Neutron skin

$$
\sqrt{\left\langle x^{2}\right\rangle_{n}}-\sqrt{\left\langle x^{2}\right\rangle_{p}}
$$

Low-energy E1 strengths

"Magic numbers" for PDR emergence

Origin of "Magic numbers"

- Magic numbers: $N(Z)=14,28,50,82, \ldots$
- Extended distribution of neutrons(protons)
- Weak binding orbitals
- Low-/ orbitals ($\ell=0,1,2, \ldots$)

Origin of "Magic numbers"

- Magic numbers: $N(Z)=14,28,50,82, \ldots$
- Extended distribution of neutrons(protons)
- Weak binding orbitals
- Low-l orbitals ($\ell=0,1,2, \ldots$)
- Skin thickness

Origin of "Magic numbers"

- Magic numbers: $N(Z)=14,28,50,82, \ldots$
- Extended distribution of neutrons(protons)
- Weak binding orbitals
- Low-l orbitals ($\ell=0,1,2, \ldots$)
- Skin thickness
- Shell structure / effective mass

Shell structure

- Effective mass: 0.6 (Skl3), 0.8 (SkM*)

Origin of "Magic numbers"

- Magic numbers: $N(Z)=14,28,50,82, \ldots$
- Extended distribution of neutrons(protons)
- Weak binding orbitals
- Low-l orbitals ($\ell=0,1,2, \ldots$)
- Skin thickness
- Shell structure and effective mass
- 3-body-induced (Density-dependent) spin-orbit interaction (Nakada's talk on Wednesday)

Summary

- Time-dependent approach to nuclear dynamics
- Few-body model
- Time-dependent density functional model
- E1 Giant resonance
- Simple dynamics (p vs n)
- Exotic nuclei: T-dep. of symmetry energy
- Low-energy E1 strength
- Suitable for exotic nuclei
- Sensitive to properties, such as skin, pairing, deformation, \& shell effect

