Nuclear dipole photoabsorption cross section and polarizability in the Self-Consistent Green's Function approach

Probing exotic structure of short-lived nuclei by electron scattering

ECT* (16-20 July 2018)

Collaborators: Carlo Barbieri (University of Surrey) Thomas Duguet (CEA) Vittorio Somà (CEA) Petr Navrátil (TRIUMF)

Critic

Francesco Raimondi

(University of Surrey)

Outline

- Self-consistent Green's function (SCGF) method
 - Non-perturbative treatment
 - Three-nucleon interactions
- Dipole Response Function and Polarisability in medium mass nuclei
 - ¹⁴O, ¹⁶O, ²²O and ²⁴O
 - ³⁶Ca, ⁴⁰Ca, ⁴⁸Ca and ⁵⁴Ca
 - 68Ni

Outline

- Self-consistent Green's function (SCGF) method
 - Non-perturbative treatment
 - Three-nucleon interactions
- Dipole Response Function and Polarisability in medium mass nuclei
 - ¹⁴O, ¹⁶O, ²²O and ²⁴O
 - ³⁶Ca, ⁴⁰Ca, ⁴⁸Ca and ⁵⁴Ca
 - 68Ni

Electromagnetic response in SCGF

OBSERVABLES

$$\sigma_{\gamma}(E) = 4\pi^{2} \alpha E R(E) \text{ photoabsorption cross section}$$

$$\alpha_{D} = 2\alpha \int dE \frac{R(E)}{E} \text{ electric dipole polarizability}$$

Response R(E) depends on excited states of the nuclear system, when "probed" with dipole operator \hat{D}

$$R(E) = \sum_{\nu} |\langle \psi_{\nu}^{A} | \hat{D} | \psi_{0}^{A} \rangle |^{2} \, \delta_{E_{\nu},E}$$

Electromagnetic response in SCGF

OBSERVABLES

$$\sigma_{\gamma}(E) = 4\pi^{2} \alpha E R(E) \text{ photoabsorption cross section}$$

$$\alpha_{D} = 2\alpha \int dE \frac{R(E)}{E} \text{ electric dipole polarizability}$$

Response R(E) depends on excited states of the nuclear system, when "probed" with dipole operator \hat{D}

$$R(E) = \sum_{\nu} |\langle \psi_{\nu}^{A} | \hat{D} | \psi_{0}^{A} \rangle|^{2} \delta_{E_{\nu},E}$$
$$\sum_{ab} \langle a | \hat{D} | b \rangle \langle \psi_{\nu}^{A} | c_{a}^{\dagger} c_{b} | \psi_{0}^{A} \rangle$$

s.p. matrix element of the dipole one-body operator

Nuclear structure component: Transition density matrix

Polarization propagator and Bethe-Salpeter equation

Equation for the polarization propagator $\Pi_{\gamma\delta,\alpha\beta}(\omega) = \Pi_{\gamma\delta,\alpha\beta}^{f}(\omega) + \Pi_{\gamma\delta,\mu\rho}^{f}(\omega)K_{\mu\sigma,\rho\nu}^{(p-h)}(\omega)\Pi_{\nu\sigma,\alpha\beta}(\omega)$ \swarrow Free polarization
Propagator
Propagator
Propagator

Approximated solution of the Bethe-Salpeter equation

Extension of the RPA: 1) Fully-dressed (correlated) single-particle propagator in the RPA diagrams C. Barbieri, W. Dickhoff PRC 68, 014311 (2003)

2) Reduction of the number of poles of the dressed propagator

C. Barbieri, M. Hjorth-Jensen PRC 79, 064313 (2009)

Self-energy and Dyson equation

$$G_{\alpha\beta}(\omega) = G_{\alpha\beta}^{(0)}(\omega) + \sum_{\gamma\delta} G_{\alpha\gamma}^{(0)}(\omega) \Sigma_{\gamma\delta}^{\star}(\omega) G_{\delta\beta}(\omega)$$

Self-energy: effective potential affecting the s.p. propagation in the nuclear medium

- Post-Hartree-Fock method based on self-consistency
- Based on realistic 2N and 3N forces
- Expansion of self-energy in Feynman diagrams

Second Order diagrams

• Non-perturbative resummation of the correlations.

Algebraic Diagrammatic Construction (ADC(n))

J. Schirmer and collaborators: Phys. Rev. A26, 2395 (1982) Phys. Rev. A28, 1237 (1983)

Self-energy expansion is treated NON-perturbatively: Entire classes of self-energy diagrams (ladder and ring) are summed at infinite order by means of a geometric series

Self-energy expansion is treated NON-perturbatively: Entire classes of self-energy diagrams (ladder and ring) are summed at infinite order by means of a geometric series

C: interaction matrix linked only to internal fermion lines

The set of ladder diagrams is a geometric series

Interaction-irreducible Self-Energy with NN and 3NFs

$$ADC(2)$$
 ($\neq 2^{nd}$ order)

Second-order diagrams with NN and 3N forces

Complete set of ADC(3) working equations in FR, C. Barbieri Phys Rev C **97**, 054308 (2018)

ADC(3) (
$$\neq$$
 3rd order)

Third-order diagrams with NN and 3N forces

Outline

- Self-consistent Green's function (SCGF) method
 - Non-perturbative treatment
 - Three-nucleon interactions
- Dipole Response Function and Polarisability in medium mass nuclei
 - ¹⁴O, ¹⁶O, ²²O and ²⁴O
 - ³⁶Ca, ⁴⁰Ca, ⁴⁸Ca and ⁵⁴Ca
 - 68Ni

Features of the calculation

- NN and 3N nuclear interaction NNLOsat (Phys. Rev. C 91, 051301(R))
- Electric dipole operator E1 $\hat{\mathcal{Q}}_{1m}^{T=1} = \frac{N}{N+Z} \sum_{p=1}^{Z} r_p Y_{1m} \frac{Z}{N+Z} \sum_{p=1}^{N} r_n Y_{1m}$
- Single-particle harmonic oscillator basis (N_{max,} $\hbar\omega$)

Discrete vs convoluted photoabsorption σ

Results for Oxygen isotopes

Polarizability in ¹⁶O and ²²O

Results for Calcium isotopes

Polarizability in ⁴⁰Ca and ⁴⁸Ca

Results for 68Ni

Comparison with experimental Coulomb excitation (Rossi *et al* PRL, 111, 242503 (2013))

CGF
0.53 1.47
7.75
3.60

 $\delta(\alpha_D, \text{th-exp}) \simeq 7\%$

α_{D} -isotopic shift correlation line for ⁶⁸Ni

Going to heavier nuclei: Sn and Xe

ADC(2) vs ADC(3) many-body truncation

Test case for SCRIT (K. Tsukada's talk on Tuesday)

Conclusion and perspectives

- Dipole response and polarisability calculated from first principles
- Continuum to be included

Correlations: going beyond 1st order RPA approximations

Backup slide

Discrete spectrum convolution

No treatment of the continuum

$$R_{\Gamma}(E) = \sum_{n} (\langle \Psi_{n}^{A} | \hat{\mathcal{Q}}_{1m}^{T=1} | \Psi_{0}^{A} \rangle)^{2} \frac{\Gamma/2\pi}{(E_{n}^{A} - E)^{2} + \Gamma^{2}/4}$$

 $\boldsymbol{\Gamma}$ width of the Lorentzian

Different reductions of the dressed propagator

Role of the correlations included in the reference state

Role of correlations beyond Hartree-Fock expected to be important for other observables

Comparison with CC-LIT (Couple Cluster- Lorentz Integral Transform method)

In collaboration with M. Miorelli and S. Bacca (TRIUMF, University of Mainz)

- CC-Singles-Doubles (analogous to 2nd RPA)
- · LIT reduces a continuum state problem to a bound-state-like problem

Different treatment of the correlations:

SCGF

Reference state correlated RPA (first-order two-body correlator)

CC-SD-LIT

HF Reference state Singles-Doubles