Ab initio calculation of the potential bubble nucleus ³⁴Si

T. Duguet, V. Somà, S. Lecluse, C. Barbieri, P. Navrátil, Phys. Rev. C95 (2017) 034319

ECT* workshop on *Probing exotic structure of short-lived nuclei by electron scattering* Trento, July 16-20 2018

Contents

Introduction

Theoretical set up

Results

Onclusions

Contents

Introduction

Theoretical set up

Results

Onclusions

Charge density $\rho_{ch}(r)$

• Tool to probe several key features of nuclear structure

Motivations to study potential (semi-)bubble nuclei

• Unconventional depletion ("semi-bubble") in the centre of $\rho_{ch}(r)$ conjectured for certain nuclei

• Quantum mechanical effect finding intuitive explanation in simple mean-field picture

- \circ ℓ = 0 orbitals display radial distribution peaked at *r* = 0
- \circ ℓ ≠ 0 orbitals are instead suppressed at small *r*
- \circ Vacancy of s states ($\ell = 0$) embedded in larger- ℓ orbitals might cause central depletion

- Marked bubbles predicted for super-/hyper-heavy nuclei [Dechargé et al. 2003, Bender & Heenen 2013]
- In light/medium-mass nuclei most promising candidate is ³⁴Si [Todd-Rutel et al. 2004, Khan et al. 2008, …]

E₂₊ (³⁴Si)= 3.3MeV [lbbotson *et al.* 1998]

Contents

Introduction

Theoretical set up

Results

Onclusions

Status of the ab initio nuclear chart

Ab initio self-consistent Green's function approach

- Solve A-body Schrödinger equation $H|\Psi_k^A\rangle = E_k^A |\Psi_k^A\rangle$ by [Dickhoff, Barbieri 2004]
 - 1) Re-express information via 1-, 2-, A-body objects $G_1=G$, G_2 , ... G_A (Green's functions)
 - 2) Self-consistent equation for $G=G_1$: Dyson Equation (DE) $G = G^0 + G^0\Sigma[G]G$
 - \rightarrow Self-consistency resums (infinite) subsets of perturbative contributions into G via Σ [G] into DE

We employ the Algebraic Diagrammatic Construction (ADC) method
 [Schirmer et al. 1983]

- Systematic, improvable scheme for the one-body Green's function, truncated at order *n* = ADC(n)
- \circ ADC(1) = Hartree-Fock(-Bogoliubov); ADC(∞) = exact solution
- At present ADC(1), ADC(2) and ADC(3) are implemented and used

• Extension to open-shell nuclei: (symmetry-breaking) Gorkov scheme [Somà, Duguet, Barbieri 2011]

Observables of interest (here)

Observables: A-body ground-state binding energy, radii, density distributions

Observe Bonus: one-body Green's function accesses A±1 energy spectra

Spectral representation

$$G_{pq}(\omega) = \sum_{k} \left\{ \frac{S_{k}^{+pq}}{\omega - \omega_{k} + i\eta} + \frac{S_{k}^{-pq}}{\omega + \omega_{k} - i\eta} \right\}$$

where
$$\begin{cases} S_k^{+pq} \equiv \langle \Psi_0^A | a_a | \Psi_k^{A+1} \rangle \langle \Psi_k^{A+1} | a_b^{\dagger} | \Psi_0^A \rangle \\ S_k^{-pq} \equiv \langle \Psi_0^A | a_a^{\dagger} | \Psi_k^{A-1} \rangle \langle \Psi_k^{A-1} | a_b | \Psi_0^A \rangle \end{cases}$$

and
$$\begin{cases} E_k^{+\,(A)} \equiv E_k^{A+1} - E_0^A \equiv \mu + \omega_k \\ E_k^{-\,(A)} \equiv E_0^A - E_k^{A-1} \equiv \mu - \omega_k \end{cases}$$

Spectroscopic factors

$$SF_k^{\pm} \equiv \sum_p S_k^{\pm pp}$$

Calculations set-up

Many-body approaches

→ Self-consistent Green's functions
 > By default in the following calculations
 > Closed-shell Dyson scheme [DGF]

• Open-shell Gorkov scheme [GGF]

Contents

Introduction

Theoretical set up

Results

Onclusions

Method & convergence

Many-body calculation implementation

- \circ Different sizes (N_{max}, h ω) of harmonic oscillator basis to expand AN interactions
- \circ Different many-body truncations [ADC(1) = HF(B), ADC(2), ADC(3)] to solve Schrödinger equation

Many-body convergence with NNLO_{sat} (densities later on)

Binding energies

E	ADC(1)	ADC(2)	ADC(3)	Experiment	
³⁴ Si	-84.481	-274.626	-282.938	-283.427	
^{36}S	-90.007	-296.060	-305.767	-308.714	
1%					
ADC(3) brings ~5% additional binding					

Missing ADC(4) < 1% binding

Charge radii

 $\mathsf{N}_{\mathsf{max}}$

′ŧħω

$\langle r_{\rm ch}^2 \rangle^{1/2}$	ADC(1)	ADC(2)	ADC(3)	Experiment
³⁴ Si	3.270	3.189	3.187	-
$^{36}\mathrm{S}$	3.395	3.291	3.285	3.2985 ± 0.0024

Radii essentially converged at ADC(2) level Correlations reduce the charge radii

Point-nucleon densities in ³⁴Si and ³⁶S

- Point-neutron distributions little affected by removal/addition of two protons
- → Going from proton density to observable charge density will smear out the depletion

Impact of correlations

Impact of correlations analysed by comparing different ADC(n) many-body truncation schemes

• Dynamical correlations cause an erosion of the bubble in ³⁴Si

3	³⁴ Si	ADC(1)	ADC(2)	ADC(3)
Γ	F_p	0.49	0.34	0.34

- \circ Traces back to two combining effects of correlations
 - 1) $1s_{1/2}$ orbitals becoming slightly occupied
 - 2) Wave functions get contracted $\rightarrow 1s_{1/2}$ more peaked at r = 0
- Including pairing explicitly does not change anything

Charge density distribution

Output the computed through folding with the finite charge of the proton

• Excellent agreement with experimental charge distribution of ³⁶S [Rychel *et al.* 1983]

○ Folding smears out central depletion → depletion factor decreases from 0.34 to 0.15

• Depletion predicted more pronounced than with MR-EDF (same impact of correlations)

Charge form factor

• Charge form factor measured in (e,e) experiments sensitive to bubble structure?

Central depletion reflects in larger |F(θ)|² for angles 60°<θ<90° and shifted 2nd minimum by 20°
 Future electron scattering experiments might see its fingerprints if enough luminosity
 Need small enough error bars at large angles to perform a safe inversion near the center

Impact of Hamiltonian (poor man's way...)

③ 3N interaction has severe/modest impact for NNLO_{sat}/NN+3N400 = leaves some question marks

Spectroscopy in A+/-1 nuclei

VS.

Green's function calculations access one-nucleon addition & removal spectra

One-nucleon separation energies

$$E_k^{\pm} \equiv \pm (E_k^{\mathrm{A} \pm 1} - E_0^{\mathrm{A}})$$

$$SF_k^{\pm} \equiv \sum_p S_k^{\pm pp}$$

• Effective single-particle energies can be reconstructed for interpretation [Duguet, Hagen 2012]

$$e_p^{\text{cent}} = \sum_{k \in \mathcal{H}_{A-1}} E_k^- S_k^{-pp} + \sum_{k \in \mathcal{H}_{A+1}} E_k^+ S_k^{+pp}$$

[Duguet *et al.* 2015]

Comparison to data

Addition and removal spectra can be compared to transfer and knock-out reactions
 Addition and removal spectra can be compared to transfer and knock-out reactions
 Addition and removal spectra can be compared to transfer and knock-out reactions
 Addition and removal spectra can be compared to transfer
 Addition and knock-out reactions
 Addition and removal spectra can be compared to transfer
 Addition and knock-out reactions
 Additina addition addited
 Additiona addition additiona additiona a

Good agreement for one-neutron addition to ³⁵Si and ³⁷Si (1/2⁻ state in ³⁵Si needs continuum)
 Much less good for one-proton removal; ³³Al on the edge of island of inversion: challenging!

 \circ Correct reduction of splitting E_{1/2}⁻ - E_{3/2}⁻ from ³⁷S to ³⁵Si

Such a sudden reduction of 50% is unique Any correlation with the bubble?!

$E_{1/2^-} - E_{3/2^-}$	^{37}S	35 Si	$^{37}S \rightarrow ^{35}Si$
SCGF	2.18	1.16	-1.02 (-47%)
(d,p)	1.99	0.91	-1.08 (-54%)

Bubble and spin-orbit splitting

• Correlation between bubble and reduction of spin-orbit splitting?

• Gather set of calculations (various Hamiltonians, various ADC(n) orders)

Many-body separation energies (observable)

Calculations support existence of a correlation

Effective single-particle energies (within fixed theoretical scheme)

 \circ Linear correlation holds for ESPEs in present scheme

 \circ Accounts for 50% of $E_{1/2}^{-}$ - $E_{3/2}^{-}$ reduction (+fragmentation of 3/2- strength)

Charge radius difference between ³⁶S and ³⁴Si

 \circ Also correlates with \textit{F}_{ch}

Great motivation to measure ρ_{ch}(r) in ³⁴Si
 Very valuable to measure Δ<r²>_{ch}^{1/2} in the meantime

Contents

Introduction

Theoretical set up

Results

Onclusions

Conclusions

► Ab initio Self-consistent Green's function calculation predicts

```
■Existence of a significant depletion in p<sub>ch</sub>(r) of <sup>34</sup>Si
```

Correlation between bubble and weakening of many-body spin-orbit splitting

Correlation between **bubble** and $\Delta < r^2 >_{ch}^{1/2}$

Next

Measurement of δ<r²>_{ch}^{1/2} from high-resolution laser spectroscopy@NSCL (R. Garcia-Ruiz)

∎Revise wi	ith				
	-Future	χ-EFT Har	miltonia	ns	
	 Meson 	-exchange	curren	ts	
				· · · ·	

Study other bubble candidates, e.g. in excited states

Nuclei	$T_{1/2}$	I^{π}	μ [nm]	$Q[\mathrm{b}]$	$\langle r^2 \rangle^{1/2}$ [fm]
^{24}Si	$140 \mathrm{ms}$	0^{+}			
^{25}Si	220 ms	$5/2^{+}$			
²⁶ Si	$2.2 \mathrm{~s}$	0^{+}			
^{27}Si	4.1 s	$5/2^{+}$	(-)0.8554(4)	(+)0.060(13)	
²⁸ Si	stable	0^{+}			3.106(30)
²⁹ Si	stable	$1/2^{+}$	-0.55529(3)		3.079(21)
³⁰ Si	stable	0^{+}			3.193(13)
$^{31}\mathrm{Si}$	$157.3~\mathrm{m}$	$3/2^{+}$			
³² Si	153 y	0^{+}			
³³ Si	6.1 s	$(3/2)^+$	(+)1.21(3)		
$^{34}\mathrm{Si}$	$2.8 \mathrm{~s}$	0^{+}			
³⁵ Si	$0.8 \mathrm{\ s}$	$(7/2)^{-}$	(-)1.638(4)		

■Measure $\rho_{ch}(r)$ in ³⁴Si from e⁻ scattering? Maybe heavier bubble candidates first...

Collaborators on ab initio many-body calculations

P. Arthuis M. Drissi J. Ripoche V. Somà A Tichai J. P. Ebran

R. Lasseri

C. Barbieri

P. Navratil

S. Binder G. Hagen T. Papenbrock

R. Roth

S. Lecluse

Ab initio many-body problem

Hamiltonian

Do we know the form of V^{2N}, V^{3N} etc Do we know how to derive them from QCD? Why would there be forces beyond pairwise? Do we need all the terms up to AN forces?

Schroedinger equation

Can we solve the SE with relevant accuracy? Can we do it for any A=N+Z? Is it even reasonable for A=200 to proceed this way? More effective approaches needed?

Partial-wave decomposition

• Point-proton distributions can be analysed (internally to the theory) in the natural basis

• Consider different partial-wave (*I,j*) contributions $\rho_p(\vec{r}) = \sum_{n\ell j} \frac{2j+1}{4\pi} n_{n\ell j} R_{n\ell j}^2(r) \equiv \sum_{\ell j} \rho_p^{\ell j}(r)$

