Electron scattering as a probe of surface properties, proton shell structure of unstable nuclei and of the symmetry energy

Xavier Roca-Maza Università degli Studi di Milano and INFN, Milano section

Probing exotic structure of short-lived nuclei by electron scattering ECT*, Trento, July 16th-20th 2018

Motivation

- In-medium nuclear (effective) interaction is not well understood for extreme values of isospin asymmetry, that is, far from the stability valley
- Experimental studies of elastic and inelastic electron scattering by unstable nuclei:
 - determine e-m charge distribution model independently
 - access to isovector nuclear excitations
 - better understanding of nuclei under extreme conditions
- Theoretical studies of elastic and inelastic electron scattering by unstable nuclei:
 - Physical process well understood.
 - Exact calculations available for the elastic channel once the exact electromagnetic charge distribution is known
 - Accurate calculations available for the bulk propetries of the nuclear response up to several tens of MeV based on EDFs.
 - Guidance for future experiments

Table of contents

Stable Nuclei: Overview

Elastic Scattering of Electrons by Nuclei How reliable are modern Energy Density Functionals? Conclusions

Exotic Nuclei: New experimental landscape

How can theory help in the experimental analysis? Suggested methodology for isotopic and isotonic chains Results & Correlations Conclusions

Charge Radii and the symmetry energy Differences in the charge radii of mirror nuclei

Dipole polarizability and the symmetry energy Conclusions **Exact solution:** Dirac partial-wave (also known as DWBA) calculation of elastic scattering of electrons by nuclei. X. Roca-Maza *et al.* Phys. Rev. C **78**, 044332

(2008) & F. Salvat et al. Comp. Phys. Comm. 165 157-190 (2005)

For studies on the nuclear charge distribution:

• $E_{beam} \sim 2\pi \frac{\hbar c}{\lambda_{Nucl.size}}$ where $\lambda_{nucl.size} \sim 2\langle r^2 \rangle^{1/2} \sim 2 - 10 \text{ fm} \Rightarrow 100 - 600 \text{ MeV}.$

- **Relativistic treatment** is needed $m_e c^2 / E_{beam} \leq 0.005$.
- At these energies, effect of screening by the orbiting atomic electrons is limited to scattering angles smaller than 1 degree (we will not calculate them here).
- The interaction potential is V_{nucl.elec}. calculated from ρ_{ch} (parametrized, model, ...)

$$V_{nucl.elec.} = 4\pi Z_0 e^2 \left\{ \frac{1}{r} \int_0^r \rho_{ch}(u) u^2 du + \int_r^\infty \rho_{ch}(u) u du \right\}$$

spherical symmetry assumed

Differential cross section for unpolarized electrons:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |\mathbf{f}(\theta)|^2 + |\mathbf{g}(\theta)|^2$$

where f and g are the **direct and spin-flip amplitudes** determined from the solution of the **Dirac equation for a central potential** $V_{\text{nucl.elec.}}(r)$ (asymptotically as a plane wave + outgoing spherical wave) f and g admit a **partial-wave expansion** in terms of,

- the phase-shifts that represents the large r behavior of Dirac spherical waves Ψ(r) function of the spherical spinors and two radial functions.
- Legendre and associated Legendre polynomials.

Sherman function: degree polarization from initially unpolarized beam scattered at angle θ $S(\theta) \equiv i \frac{f(\theta)g^*(\theta) - f^*(\theta)g(\theta)}{f(\theta)g^*(\theta) - f^*(\theta)g(\theta)}$

$$S(\theta) \equiv i \frac{|f(\theta)|^2 + |g(\theta)|^2}{|f(\theta)|^2 + |g(\theta)|^2}$$

It may help in setting up detectors

Form factor

$$|F_{DWBA}(q)|^2 \equiv \frac{d\sigma/d\Omega}{d\sigma_{point}/d\Omega}$$

where $d\sigma_{point}/d\Omega$ is the DWBA solution for a point nucleus and $c\hbar q = 2E \sin(\theta/2)$.

- This definition, as compared to dσ/dΩ dσ_{Mott}/dΩ', disentagles better the finite size effects of the nucleus.
- Nevertheless, it is found that the choice is not critical for our study in the low momentum transfer regime.

Mott DCS:
$$\frac{d\sigma_{Mott}}{d\Omega} = \left(\frac{Ze^2}{2E}\right)^2 \frac{\cos^2\theta}{\sin^4\theta}$$
; for small angles diverges as θ^{-4}

Energy Dependence in the e-m Form Factor

Test: The form factor in DWBA is almost energy-independent in the region we are interested in (low q-regime).
F_{DWBA}(q) is a good quantity for the study of the electromagnetic structure of the nucleus

Experiment versus Theory in stable nuclei

Nuclear Model (NM) provides:

NM+DWBA provides:

How reliable are modern Energy Density Functionals?

In F(q) and $d\sigma(\theta)$:

- ► Exist a quasi-model-independent *q*-regime: Up to 1 1.5 fm⁻¹ for the studied models and scattering processes.
- Exist discrepancies between models in the high *q*-regime (remember differences in ρ_{ch} at low *r*)
- If we define a distance, namely d_w, between experimental and theorical results:

$$d_{w}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{d\sigma_{i}^{exp} - d\sigma_{i}^{theo}}{\delta\sigma_{i}^{exp}} \right)^{2}$$

we observe that the criteria does not decide between models

Nucleus	Ee				d_w^2				"Best"
	MeV	Exp. fit	DD-ME2	G2	NL3	FSUGold	SLy4	SKM*	model
¹⁶ 0	374.5	11.1 ^b	88.7	13.1	38.6	206.	191.	194.	G2
⁴⁰ Ca	250.0	7.18 ^b	3.15	16.2	13.9	0.84	24.4	24.3	FSUGold
	500.0	3.48 ^b	1.49	42.9	19.7	5.79	40.0	39.0	DD-ME2
⁴⁸ Ca	250.0	6.66 ^b	4.85	9.74	7.14	4.08	14.9	13.6	FSUGold
	500.0	3.19 ^b	1.11	17.0	3.53	2.57	21.84	18.5	DD-ME2
⁹⁰ Zr	209.6	0.78 ^b	0.87	2.21	1.36	0.65	6.53	5.36	FSUGold
	302.0	0.86 ^b	0.91	9.92	3.27	0.67	9.35	7.19	FSUGold
¹¹⁸ Sn	225.0	5.43 ^a	18.4	34.8	25.5	31.8	2.75	4.20	SLy4
²⁰⁸ Pb	248.2	30.6 ^b	44.4	154.	74.8	89.5	89.2	61.0	DD-ME2
	502.0	21.2 ^b	14.1	186.	50.5	61.1	95.9	76.5	DD-ME2
D(40Ca - 42Ca)	250.0	0.56 ^c	9.1	28.3	16.0	11.1	9.1	12.9	DD-ME2/SLy4
$D(^{40}Ca - ^{44}Ca)$	250.0	1.14 ^c	4.5	29.6	12.2	3.88	7.08	9.13	FSUGold
$D(^{40}Ca - ^{48}Ca)$	250.0	1.06 ^c	16.4	4.89	7.74	38.5	94.1	49.3	G2
D(⁴⁸ Ca - ⁴⁸ Ti)	250.0	2.49 ^c	18.0	19.6	31.0	37.8	71.8	64.9	DD-ME2
$D(^{116}Sn - ^{118}Sn)$	225.0	2.05 ^a	8.05	7.80	9.00	10.1	13.2	18.5	G2
$D(^{118}Sn - ^{124}Sn)$	225.0	4.03 ^a	5.35	6.98	7.50	9.22	7.05	7.18	DD-ME2

Ability test for the models

^a A.S. Litvinenko et al., Nucl.Phys. **A182**, 265 (1972). ^b B. Dreher, J. Friedrich, K. Merle, H. Rothhaas and G. Luhrs, Nucl.Phys.**A235**, 219 (1974). ^c R.F. Frosch et al. Phys. Rev. **174** (1968) 1380.

Conclusions

- Theory is well understood and calculations are feasible: exact solution of the scattering process once the nuclear e-m charge distribution has been provided.
- disagreement with the experiment due exclusively to the nuclear model
- The defined Form Factor
 - include all finite size effects
 - is nearly energy-independent at low momentum transfer
- d_w^2 does not decide between the different models

How can theory help in the experimental analysis? Could we find simple and general trends for F(q) along isotopic/isotonic chains?

Proposed methodology:

1.- use **NM + DWBA** results within the low *q*-region **as a guide 2.-** predict F_{DWBA}(q) along isotopic and/or isotonic chains, from the neutron-rich to proton-rich side

- **3.-** parameterize the charge form factor within the **Helm model** \Rightarrow insights on the evolution of the surface and bulk contibutions to the charge distribution as the isospin number increases
 - Advantages: Helm model has two parameters with clear physical meaning and analytic expression of F(q)
 - Disadvantages: Helm model assumes PWBA, it is (in principle) needed to introduce a q_{effective} that corrects the e-m effects on the phase of the incident electron wave functions (Coulomb distortions).

4.- Here, as a **benchmark NM**, we will use **G2** because it takes into account explicitly the electromagnetic structure of the nucleon self-consistently within the fitting procedure

Helm Model: 2 parameters

Helm Charge Form Factor: R₀ & σ

$$F_{H}(q) = \int e^{i\vec{q}\vec{r}} \rho_{H}(\vec{r}) d\vec{r} = \frac{3}{R_{0}q} j_{1}(qR_{0}) e^{-\sigma^{2}q^{2}/2}$$

where σ measures the surface fall-off of the density distribution and R₀ measures its bulk extension.

- How we determine the parameters:
 - R₀: one requires that the first zero of F_H occurs at the same q of F_{PWBA} (fourier transform of the self-consistent density). Therefore, it coincides with the sharp radius.
 - o: is chosen to reproduce the height of the second maximum of |F_{PWBA}|

q_{eff}: **1** parameters

Effect of the nuclear electrostatic potential on the momentum transfer (classical estimation):

$$\left< \hbar c q_{eff} \right> \approx \left< \hbar c q - V \right> = \left| \left(\hbar c q - V(r) \right) \rho_{ch}(r) dr \right.$$

considering a constant charge distribution in a spherical nucleus,

$$q_{eff} = q \left(1 + C \frac{Z\alpha}{qR_{ch}} \right) \xrightarrow{m_e \ll q_e} \quad q \left(1 + C \frac{Z\hbar c\alpha}{ER_{ch}} \right)$$

where $R_{c\,h}\approx \sqrt{3/5}r_0A^{1/3}$ and C=6/5

- One can always reproduce approximately the neglected Coulomb phase shifts fitting C in order to reproduce the measured minima in F(q).
- Isotopic chains: correction produce a change in the momentum transfer of the same order than the change produced by adding/subtracting two more neutrons.
- Isotonic chains: correction can be neglected for our purposes here.

Testing Method Scheme:

Results & Correlations: Z=50 and Z=20 isotopic chains

Charge Form Factor

$F_{\mathbf{D} \boldsymbol{W} \boldsymbol{B} \boldsymbol{A}}$ increases and shifts towards smaller q as the neutron number increases

Methodology accurate for low-momentum transfer

Helm and self-consistent charge densities and charge radii

Correlations: evolution of first minimum or inflection point

Correlations: the smaller the bulk part of the nuclear charge distribution and the compact the surface, the smaller the form factor

Therefore, if two or more isotopes have been measured ...

- Inear correlations would provide, for an unknown nucleus of the chain, a hint on the value expected for the square of the experimental electric charge form factor at its first minimum
- if the value of the squared modulus of the form factor is determined experimentally at its first minimum, the charge density in the Helm model can be sketched from similar correlations

Results & Correlations: N=82, N=50 and N=14 isotonic chains

Differential cross sections and form factors

Methodology accurate for low-momentum transfer

Charge form factors F_{DWBA} increases and shifts towards smaller q as the neutron number increases

Charge densities and proton single particle levels

The increasing rate of the form factor basically depends on the proton level which is being filled

Also in lighter isotonic chains...

The larger the number of protons, the larger the formfactor

...this was clear, less clear was that it is almost linear along isotonic chains

Conclusions: isotopic chains

- The described analysis is potentially useful for future electron-nucleus elastic scattering experiments,
 - the linear correlations shown would provide, for an unknown nucleus of a chain, a hint on the value expected for |F_{exp}(q_{min})|² and for the DCS.
- The exact analysis of the Coulomb phase shifts applied to a exotic nuclei and compared with future measurments could, potentially, elucidate some aspects related with the isospin asymmetry of the nuclear force.

Conclusions: isotonic chains

- Rate of change of the electric charge form factor is extremely sensitive on the proton level which is being filled
 - levels with large n and small l contribute with opposite sign with respect to levels without radial nodes and large angular momenta.
 - plotting $|F(q)|^2$ against $\sigma^2 q_{min}^2$ magnifies such effects
- Therefore, electron scattering in isotonic chains can be a useful tool to probe the proton shell structure of exotic nuclei: filling order and occupancy of the different valence proton orbitals.

Differences in the proton radii of mirror nuclei

If isospin symmetry conserved (ISC) in nuclei

•
$$r_n(N,Z) = r_p(Z,N)$$

$$\bullet \, \Delta r_{\mathfrak{n}\mathfrak{p}}(N,Z) \equiv r_{\mathfrak{n}}(N,Z) - r_{\mathfrak{p}}(N,Z) = r_{\mathfrak{p}}(Z,N) - r_{\mathfrak{p}}(N,Z)$$

Differences in the charge radii in mirror nuclei

•
$$r_{ch} \approx \left(r_p^2 + R_P^2 + \frac{N}{Z}R_N^2 + spin - orbit\right)^{1/2}$$

• If ISC
$$\Delta r_{np}(N, Z) \approx r_{ch}(Z, N) - r_{ch}(N, Z)$$

• $\Delta r_{np}(N, Z)$ in heavy nuclei is correlated with L

Differences in the charge radii in mirror nuclei

- Why correlation remains when isospin symmetry is broken by Coulomb?
- Why correlation improves for ΔR_{ch} as compared to that for ΔR_{np} ?
- Other EDFs agree (see Phys. Rev. C 93 014314 (2018))

B. A. Brown, Phys. Rev. Lett. 119 122502 (2017)

Dipole polarizability: definition

From a macroscopic perspective

The electric **polarizability** measures the tendency of the nuclear **charge distribution to be distorted** $\alpha_D \sim \frac{\text{electric dipole moment}}{\text{external electric field}}$

From a microscopic perspective

The electric **polarizability** is proportional to the **inverse energy weighted sum rule (IEWSR)** of the electric dipole response in nuclei

$$\alpha_{\rm D} = \frac{8\pi}{9}e^2\sum\frac{{\rm B}({\rm E}1)}{{\rm E}}$$

or

$$\alpha_{\rm D} = \frac{\hbar c}{2\pi^2} \int \frac{\sigma_{\rm ph. \ abs.}(E)}{E^2} dE$$

Dipole polarizability: macroscopic approach

The dielectric theorem establishes that the m_{-1} moment can be computed from the expectation value of the Hamiltonian in the constrained ground state $\mathcal{H}' = \mathcal{H} + \lambda \mathcal{D}$.

Adopting the Droplet Model ($m_{-1} \propto \alpha_D$):

$$\mathfrak{m}_{-1} \approx \frac{A\langle r^2 \rangle^{1/2}}{48J} \left(1 + \frac{15}{4}\frac{J}{Q}A^{-1/3}\right)$$

within the same model, connection with the neutron skin thickness:

$$\alpha_{\rm D} \approx \frac{A \langle r^2 \rangle}{12J} \left[1 + \frac{5}{2} \frac{\Delta r_{\rm np} + \sqrt{\frac{3}{5} \frac{e^2 Z}{70J}} - \Delta r_{\rm np}^{\rm surface}}{\langle r^2 \rangle^{1/2} (I - I_{\rm C})} \right]$$

Is this correlation appearing also in EDFs?

Isovector Giant Dipole Resonance in²⁰⁸**Pb**:

X. Roca-Maza, et al., Phys. Rev. C 88, 024316 (2013).

 $\alpha_D J$ is linearly correlated with Δr_{np} and no α_D alone within EDFs

Dipole polarizability in ¹³²Sn

Thank you for your attention!

Extra Material

What happens if we use a more realistic ansatz for the parametrized density?

If we use a modified Helm density (3 parameters): able to reproduce the central "depression" or "bump" typically present in charge distributions.

Just two examples of the N = 82 isotonic chain.

What happens if we use a more realistic ansatz for the parametrized density?

If we use a 2pF or 3pF density distributions.

How much affects the "new" parameterized density our previous analysis?

One finds different quantitative results but similar **behaviours** \Rightarrow our analysis still valid when using other density distributions

How much the form factor looks like?

