Ab initio computations of the nuclear spectral function

Vittorio Somà
CEA Saclay, France

Probing exotic structure of short-lived nuclei by electron scattering
ECT* Trento
18 July 2018

Collaborators:
Carlo Barbieri, Francesco Raimondi, Arnau Rios (University of Surrey), Thomas Duguet (CEA Saclay), Petr Navrátil (TRIUMF)

Outline

\bigcirc Introduction
\bigcirc Calculation set-up

- Many-body method: self-consistent Green's functions
- Hamiltonian

○ Results

- Ground-state properties
- Spectral function
\bigcirc Conclusions

Outline

\bigcirc Introduction
© Calculation set-up

- Many-body method: self-consistent Green's functions
- Hamiltonian

○ Results

- Ground-state properties
- Spectral function
- Conclusions

Evolution of ab initio nuclear chart

© "Exact" approaches

- Since 1980's
- Monte Carlo, CI, ...
- Factorial scaling
- Approximate approaches for closed-shell nuclei
- Since 2000's
- SCGF, CC, IMSRG
- Polynomial scaling
© Ab initio shell model
- Since 2014
- Effective interaction via CC/IMSRG
- Mixed scaling

Chiral effective field theory \& nuclear interactions

\odot Chiral EFT provides a systematic framework to construct $A \mathrm{~N}$ interactions $(A=2,3, \ldots)$
\bigcirc Main features:

- High-energy physics unresolved \rightarrow soft potentials \rightarrow improved many-body convergence
- Many-body forces and currents consistently derived
- A theoretical error can be, in principle, assigned to each order in the expansion

\Rightarrow Ideally: apply to the many-nucleon system (and propagate the theoretical error)

Benchmarks and diagnostics

Benchmark between various methods

[Hebeler et al. 2015]

Benchmarks and diagnostics

Benchmark between various methods

[Hebeler et al. 2015]

Diagnostics of nuclear interactions

[Lapoux et al. 2016]

Outline

○ Introduction
© Calculation set-up

- Many-body method: self-consistent Green's functions
- Hamiltonian

○ Results

- Ground-state properties
- Spectral function

○ Conclusions

Self-consistent Green's function approach

\odot Solution of the A-body Schrödinger equation $H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$ achieved by

1) Rewriting it in terms of 1-, 2-, A-body objects $G_{1}=G, G_{2}, \ldots G_{\mathrm{A}}$ (Green's functions)
2) Expanding these objects in perturbation (in practise $\mathbf{G} \rightarrow$ one-body observables, etc..)
\circ Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions

Self-consistent Green's function approach

\odot Solution of the \boldsymbol{A}-body Schrödinger equation $H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$ achieved by

1) Rewriting it in terms of 1-, 2-, A-body objects $G_{1}=G, G_{2}, \ldots G_{\mathrm{A}}$ (Green's functions)
2) Expanding these objects in perturbation (in practise $\mathbf{G} \boldsymbol{\rightarrow} \boldsymbol{\rightarrow}$ one-body observables, etc..)
\circ Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions
\odot Self-energy expansion

Self-consistent Green's function approach

\odot Solution of the \boldsymbol{A}-body Schrödinger equation $H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$ achieved by

1) Rewriting it in terms of $\mathbf{1 -}, \mathbf{2 -}, \ldots . . A$-body objects $G_{1}=G, G_{2}, \ldots G_{A}$ (Green's functions)
2) Expanding these objects in perturbation (in practise $\mathbf{G} \rightarrow$ one-body observables, etc..)

- Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions
\odot Self-energy expansion

\odot Access a variety of quantities
\circ One-body GF \rightarrow Ground-state properties of even-even $A+$ spectra of odd-even neighbours
- Two-body GF \rightarrow Excited spectrum of even-even A
- Self-energy \rightarrow Optical potential for nucleon-nucleus scattering

Gorkov-Green's functions for open-shell systems

- Standard expansion schemes fail to account for superfluidity

๑ Gorkov scheme generalises GF theory to superfluid systems

- Use symmetry breaking (particle number) to effectively include pairing correlations
- Start expansion from symmetry-breaking reference $\left|\Psi_{0}\right\rangle \equiv \sum_{A}^{\text {even }} c_{A}\left|\psi_{0}^{A}\right\rangle$
- 4 one-body Gorkov propagators

$$
\mathbf{G}_{a b}=\left(\begin{array}{cc}
G_{a b}^{11} & G_{a b}^{12} \\
G_{a b}^{21} & G_{a b}^{22}
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
& \downarrow
\end{array}\right)
$$

- Symmetry must be eventually restored
© Current implementation: ADC(2)

$$
\Sigma_{a b}^{11(2)}(\omega)=\uparrow \omega^{c} \omega_{a b}^{11(1)}=
$$

[Somà, Duguet \& Barbieri 2011]

$\mathrm{NNLO}_{\text {sat }}$ interaction

© Development of a new ChEFT-inspired Hamiltonian: NNLO ${ }_{\text {sat }}$

- Simultaneous fit of low-energy constants in 2- and 3-body sectors
- Data from light nuclei included in fit of low-energy constants

TABLE I. Binding energies (in MeV) and charge radii (in fm) for ${ }^{3} \mathrm{H},{ }^{3,4} \mathrm{He},{ }^{14} \mathrm{C}$, and ${ }^{16,22,23,24,25} \mathrm{O}$ employed in the optimization of [Ekström et al. 2015] $\mathrm{NNLO}_{\text {sat }}$.

	$E_{\text {g.s. }}$	Expt. [69]	r_{ch}	Expt. [65,66]
${ }^{3} \mathrm{H}$	8.52	8.482	1.78	$1.7591(363)$
${ }^{3} \mathrm{He}$	7.76	7.718	1.99	$1.9661(30)$
${ }^{4} \mathrm{He}$	28.43	28.296	1.70	$1.6755(28)$
${ }^{14} \mathrm{C}$	103.6	105.285	2.48	$2.5025(87)$
${ }^{16} \mathrm{O}$	124.4	127.619	2.71	$2.6991(52)$
${ }^{22} \mathrm{O}$	160.8	$162.028(57)$		
${ }^{24} \mathrm{O}$	168.1	$168.96(12)$		
${ }^{25} \mathrm{O}$	167.4	$168.18(10)$		

\odot Generated debate in the community

- Ab initio philosophy?
- EFT philosophy?
- Which data should we use to fix the parameters of the interaction?
- Optimistic view: $\mathrm{NNLO}_{\text {sat }}$ indicates that ChEFT strategy is feasible

N3LO $N N+3 N(L N L)$ interaction

© Novel version of the 'standard' N3LO interaction

- "Local/nonlocal" (LNL) regulators [Navrátil 2018]
- Follows traditional ab initio strategy (fit X-body sector on X-body data)

[Somà, et al. in preparation]

Outline

○ Introduction
© Calculation set-up

- Many-body method: self-consistent Green's functions
- Hamiltonian
\bigcirc Results
- Ground-state properties
- Spectral function
© Conclusions

Systematics in mid-mass nuclei

© Systematic investigation of $Z=18$ - 24 region

Binding energies

Systematics in mid-mass nuclei

© Systematic investigation of $Z=18-24$ region

Systematics in mid-mass nuclei

© Systematic investigation of $Z=18-24$ region

Doubly open-shell nuclei

- Currently, description of doubly open-shell nuclei quantitatively worsens with deformation

Doubly open-shell nuclei

© Currently, description of doubly open-shell nuclei quantitatively worsens with deformation
\Rightarrow Correlation with deformation parameter β

Doubly open-shell nuclei

© Currently, description of doubly open-shell nuclei quantitatively worsens with deformation
\Rightarrow Correlation with deformation parameter β

Doubly open-shell nuclei

© Currently, description of doubly open-shell nuclei quantitatively worsens with deformation
\Rightarrow Correlation with deformation parameter β

Doubly open-shell nuclei

© Currently, description of doubly open-shell nuclei quantitatively worsens with deformation
\Rightarrow Correlation with deformation parameter β

Charge radii

\odot Charge radii along argon, calcium and titanium chains

Charge radii

\bigcirc Charge radii along calcium and nickel chains

- Large sensitivity on the employed nuclear Hamiltonian
- Correlation with spectrum and / or saturation properties?
- Do we need to include radii in the fit?

Outline

○ Introduction
© Calculation set-up

- Many-body method: self-consistent Green's functions
- Hamiltonian
\bigcirc Results
- Ground-state properties
- Spectral function
- Conclusions

Spectral representation

$$
G_{a b}(z)=\sum_{\mu} \frac{\left\langle\Psi_{0}^{A}\right| a_{a}\left|\Psi_{\mu}^{A+1}\right\rangle\left\langle\Psi_{\mu}^{A+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{z-E_{\mu}^{+}+i \eta}+\sum_{\nu} \frac{\left\langle\Psi_{0}^{A}\right| a_{b}^{\dagger}\left|\Psi_{\nu}^{A-1}\right\rangle\left\langle\Psi_{\nu}^{A-1}\right| a_{a}\left|\Psi_{0}^{A}\right\rangle}{z-E_{\nu}^{-}-i \eta}
$$

Spectral representation

Spectral representation

Spectroscopic probabilities matrices

$$
\begin{aligned}
S_{\mu}^{+a b} & \equiv\left\langle\Psi_{0}^{\mathrm{A}}\right| a_{a}\left|\Psi_{\mu}^{\mathrm{A}+1}\right\rangle\left\langle\Psi_{\mu}^{\mathrm{A}+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{\mathrm{A}}\right\rangle \\
S_{\nu}^{-a b} & \equiv\left\langle\Psi_{0}^{\mathrm{A}}\right| a_{a}^{\dagger}\left|\Psi_{\nu}^{\mathrm{A}-1}\right\rangle\left\langle\Psi_{\nu}^{\mathrm{A}-1}\right| a_{b}\left|\Psi_{0}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

$$
G_{a b}(z)=\sum_{\mu} \frac{\left\langle\Psi_{0}^{A}\right| a_{a}\left|\Psi_{\mu}^{A+1}\right\rangle\left\langle\Psi_{\mu}^{A+1}\right| a_{b}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{z-E_{\mu}^{+}+i \eta}+\sum_{\nu} \frac{\left\langle\Psi_{0}^{A}\right| a_{b}^{\dagger}\left|\Psi_{\nu}^{A-1}\right\rangle\left\langle\Psi_{\nu}^{A-1}\right| a_{a}\left|\Psi_{0}^{A}\right\rangle}{z-E_{\nu}^{-}-i \eta}
$$

Eigenstates of $A+1$
One-nucleon addition separation energies

$$
E_{\mu}^{+} \equiv E_{\mu}^{A+1}-E_{0}^{A}
$$

Spectroscopic factors

$$
S F_{\mu}^{+} \equiv \operatorname{Tr}_{\mathcal{H}_{1}}\left[\mathbf{S}_{\mu}^{+}\right]=\sum_{a \in \mathcal{H}_{1}}\left|U_{\mu}^{a}\right|^{2}
$$

$$
S F_{\nu}^{-} \equiv \operatorname{Tr}_{\mathcal{H}_{1}}\left[\mathbf{S}_{\nu}^{-}\right]=\sum_{a \in \mathcal{H}_{1}}\left|V_{\nu}^{a}\right|^{2}
$$

Combining numerator and denominator result in the spectral function

$$
\begin{gathered}
\text { Spectral function } \\
\mathbf{S}(z) \equiv \sum_{\mu \in \mathcal{H}_{A+1}} \mathbf{S}_{\mu}^{+} \delta\left(z-E_{\mu}^{+}\right)+\sum_{\nu \in \mathcal{H}_{A-1}} \mathbf{S}_{\nu}^{-} \delta\left(z-E_{\nu}^{-}\right)
\end{gathered}
$$

$$
\longrightarrow \begin{gathered}
\text { Spectral strength distribution } \\
\mathcal{S}(z) \equiv \operatorname{Tr}_{\mathcal{H}_{1}}[\mathbf{S}(z)] \\
=\sum_{\mu \in \mathcal{H}_{A+1}} S F_{\mu}^{+} \delta\left(z-E_{\mu}^{+}\right)+\sum_{\nu \in \mathcal{H}_{A-1}} S F_{\nu}^{-} \delta\left(z-E_{\nu}^{-}\right)
\end{gathered}
$$

Spectral representation

$$
G_{a b}(z)=\sum_{\mu} \frac{U_{a}^{\mu}\left(U_{b}^{\mu}\right)^{*}}{z-E_{\mu}^{+}+i \eta}+\sum_{\nu} \frac{\left(V_{a}^{\nu}\right)^{*} V_{b}^{\nu}}{z-E_{\nu}^{-}-i \eta}
$$

Separation energies

$$
\begin{aligned}
& E_{\mu}^{+} \equiv E_{\mu}^{A+1}-E_{0}^{A} \\
& E_{\nu}^{-} \equiv E_{0}^{A}-E_{\nu}^{A-1}
\end{aligned}
$$

Spectral strength distribution

$$
\mathcal{S}(z)=\sum_{\mu \in \mathcal{H}_{A+1}} S F_{\mu}^{+} \delta\left(z-E_{\mu}^{+}\right)+\sum_{\nu \in \mathcal{H}_{A-1}} S F_{\nu}^{-} \delta\left(z-E_{\nu}^{-}\right)
$$

Spectroscopic factors

$$
\begin{aligned}
& S F_{\mu}^{+} \equiv \operatorname{Tr}_{\mathcal{H}_{1}}\left[\mathbf{S}_{\mu}^{+}\right]=\sum_{a \in \mathcal{H}_{1}}\left|U_{\mu}^{a}\right|^{2} \\
& S F_{\nu}^{-} \equiv \operatorname{Tr}_{\mathcal{H}_{1}}\left[\mathbf{s}_{\nu}^{-}\right]=\sum_{a \in \mathcal{H}_{1}}\left|V_{\nu}^{a}\right|^{2}
\end{aligned}
$$

Spectral strength in experiments

\bigcirc Clean connection to ($e, e^{\prime} p$) experiments

Target (A-body)
\circ Measuring \mathbf{q} and \mathbf{p} gives information on $\mathbf{p}_{\mathbf{m}}$
\circ Similarly for missing energy E_{m}
\circ Spectral strength distribution $\leftrightarrow \mathrm{P}\left(\mathrm{p}_{\mathrm{m}}, \mathrm{E}_{\mathrm{m}}\right)$

๑ Spectroscopy via knockout/transfer exp.

Results from (e, ép) on ${ }^{16}$ (ALS in Saclay)

[Mougey et al. 1980]

SCGF calculations

[Cipollone et al. 2015]

Spectral strength distribution

© ${ }^{34} \mathrm{Si}$ neutron addition \& removal strength

ADC(1)

- Independent-particle picture

Spectral strength distribution

© ${ }^{34} \mathrm{Si}$ neutron addition \& removal strength

ADC(2)

- Second-order dynamical correlations fragment IP peaks

Spectral strength distribution

$\odot{ }^{34}$ Si neutron addition \& removal strength

ADC(3)

- Third-order compresses the spectrum (main peaks)
- Further fragmentation is generated

Spectral strength distribution

© 34Si neutron addition \& removal strength

ADC(3)

- Third-order correlations compress the spectrum
- Further fragmentation is generated

One-neutron addition

[Thorn et al. 1984]
Exp. data: [Eckle et al. 1989]
[Burgunder et al. 2014]

Reduction of $\mathrm{E}_{1 / 2^{-}}-\mathrm{E}_{3 / 2^{-}}$spin-orbit splitting (unique in the nuclear chart) well reproduced

K spectra

$\Rightarrow K$ spectra show interesting g.s. spin inversion and re-inversion

Laser spectroscopy COLLAPS @ ISOLDE

Spectral function of ${ }^{40} \mathrm{Ar}$

๑ Relevant for neutrino-nucleus scattering (e.g. DUNE)

Neutrons
N3LO ${ }_{\text {Inl }}$

Protons

Spectral function of ${ }^{40} \mathrm{Ar}$

© Relevant for neutrino-nucleus scattering (e.g. DUNE)

Neutrons

$\mathrm{NNLO}_{\text {sat }}$
Protons

Spectral function of ${ }^{40} \mathrm{Ar}$

© $\mathrm{ADC}(2)$ truncation, $\mathrm{NNLO}_{\text {sat }}$ interaction

Conclusions

\odot Many-body formalism well grounded

- Closed- \& open-shell nuclei, g.s. observables \& spectroscopy, ...
- Two-body propagators to be implemented to access spectroscopy of even-even systems
- At present, interactions constitute main source of uncertainty
- ChEFT is undergoing intense development, facing fundamental \& practical issues
- Pragmatic choices lead to successful applications
- Different observables needed to test interactions
\odot Extension of ab initio simulations to heavy nuclei

- Computational challenges: 3NF, higher-order tensors, ...
- Formal challenges: extension to doubly open-shell, symmetry restoration

Appendix

Doubly open-shell nuclei

๑ Approximate/truncated methods capture correlations via an expansion in ph excitations \odot Open-shell nuclei are (near-)degenerate with respect to ph excitations

\odot Solution: multi-determinantal or symmetry-breaking reference state

- Symmetry-breaking solution allows to lift the degeneracy

Developed and implemented

Quadrupole correlations
Deformation
\uparrow
Breaking of $\mathrm{SU}(2)$

Doubly open-shells

Gorkov-Green's functions

Inclusion of ADC(3) in progress: $\quad \Sigma^{11[A D C(3)]}$

A_{33}

B_{33}
$A_{32}=A_{31}$

$B_{32}=B_{31}$

$A_{23}=A_{13}$

$B_{23}=B_{13}$

$A_{11}=A_{22}=A_{12}=A_{21}$

$B_{11}=B_{22}=B_{12}=B_{21}$

C_{23}

C_{13}

C_{32}

C_{22}

C_{12}

C_{21}

C_{11}

$\operatorname{ADC}(\boldsymbol{n})$ diagrams	$n=\mathbf{1}$	$\mathbf{2}$	3
Dyson	1	1	2
Gorkov	2	4	34

Three-body forces

© Hamiltonians for A-nucleon systems contain in principle up to A-body operators

- At least three-body forces need to be included in realistic ab initio calculations
© Diagrammatic expansion can be simplified by exploiting the concept of effective interactions
- Generalisation of normal ordering (fully correlated density matrices)
effective 1-body

effective 2-body

$$
E_{0}^{N}=\frac{1}{2 \pi} \int_{-\infty}^{\epsilon_{F}^{-}} d \omega \sum_{\alpha \beta}\left(T_{\alpha \beta}+\omega \delta_{\alpha \beta}\right) \operatorname{Im} G_{\beta \alpha}(\omega)-\frac{1}{2}\left\langle\Psi_{0}^{N}\right| \hat{W}\left|\Psi_{0}^{N}\right\rangle
$$

Symmetry breaking and restoration

\odot Variance in particle number as an indicator of symmetry breaking

$$
\sigma_{A}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}}
$$

\rightarrow Only concerns neutron number
\rightarrow Decreases as many-body order increases

- Eventually, symmetries need to be restored
- Only recently the formalism was developed for MBPT and CC
- Case of SU(2) [Duguet 2014]
- Case of U(1) [Duguet \& Signoracci 2016]
- Symmetry-restored Gorkov GF formalism still to be developed

Point-nucleon densities

© Point-proton density of ${ }^{34} \mathrm{Si}$ displays a marked depletion in the centre
© Point-neutron distributions little affected by removal/addition of two protons
○ Bubble structure can be quantified by the depletion factor $F \equiv \frac{\rho_{\max }-\rho_{\mathrm{c}}}{\rho_{\max }} \quad \quad{ }^{\mathrm{m}} \mathrm{H} \quad F_{\mathrm{p}}\left({ }^{34} \mathrm{Si}\right)=0.34$

${ }^{\prime \prime} \rightarrow$ Going from proton to (observable) charge density will smear out depletion

Bogolyubov many-body perturbation theory

Odd-even systems

- Current implementation targets $\mathrm{J}^{\Pi}=0^{+}$states
\rightarrow Equations simplify: j-coupled scheme, block-diagonal structure, ...

๑ Different possibilities to compute odd-even g.s. energies:
(1) From separation energies
\rightarrow Either from A-1 or A+1

(2) From fully-paired even number-parity state
" - "Fake" odd-A plus correction

[Duguet et al. 2001]

Fragmentation of single-particle strength in infinite matter

- Spectral function depicts correlations

- Broad peak signals depart from mean-field / independent particle picture
- Well-defined (long-lived) quasiparticles at the Fermi surface
- Long mean free path for $\mathrm{E}<\mathrm{E}_{\mathrm{F}}$

[Rios, Somà 2012]

