Shape Coexistence and Competing Symmetries in Nuclei

A. Leviatan Racah Institute of Physics The Hebrew University, Jerusalem, Israel

N. Gavrielov (HU)

Workshop on ``Probing exotic structure of short-lived nuclei by electron scattering", ECT*, Trento, Italy, July 16 – 20, 2018

Shape Coexistence in Nuclei

Exp: prolate-oblate spherical-prolate-oblate spherical-prolate Kr, Se, Hg neutron-deficient isotopes ¹⁸⁶Pb Sr neutron-rich isotopes ⁹⁶Zr, ⁷⁸Ni

- Shell model approach
 - Multiparticle-multihole intruder excitations across shell gaps
 - Drastic truncation of large SM spaces
- Mean-field approach (EDF)
 - Coexisting shapes associated with different minima of an energy surface
 - Beyond MF methods: restoration of broken symmetries
- Symmetry-based approach
 - Dynamical symmetries \leftrightarrow phases
 - Geometry: coherent (intrinsic) states

Dynamical Symmetry

$$\begin{array}{ccc} G_{\rm dyn} \supset & G & \supset \cdots \supset G_{\rm sym} \\ \downarrow & \downarrow & & \downarrow \\ [N] & \langle \Sigma \rangle & & \Lambda \end{array}$$

 $\hat{H} = \mathop{\scriptscriptstyle \sum}_{G} a_G \, \hat{C}_G$

Solvability of the complete spectrum

• Quantum numbers for **all** eigenstates

 $E = E_{[N]\langle \Sigma \rangle \dots \Lambda}$ $|[N]\langle\Sigma\rangle\Lambda\rangle$

Dynamical Symmetry

$$\begin{array}{ccc} G_{\rm dyn} \supset & G & \supset \cdots \supset G_{\rm sym} \\ \downarrow & \downarrow & & \downarrow \\ [N] & \langle \Sigma \rangle & & \Lambda \end{array}$$

 $\hat{H} = \mathop{\scriptscriptstyle \sum}_G a_G \, \hat{C}_G$

- Solvability of the complete spectrum $E = E_{[N]\langle\Sigma\rangle...\Lambda}$ • Quantum numbers for all eigenstates $|[N]\langle\Sigma\rangle\Lambda\rangle$
- IBM: s (L=0) , d (L=2) bosons, N conserved (Arima, Iachello 75)

 $G_{dyn} = U(6), G_{sym} = SO(3)$

 $\begin{array}{ll} U(6) \supset U(5) \supset SO(5) \supset SO(3) & | [N] n_d \tau n_{\Delta} L \rangle & \text{Spherical vibrator} \\ U(6) \supset SU(3) \supset SO(3) & | [N] (\lambda, \mu) K L \rangle & \text{Prolate-deformed rotor} \\ U(6) \supset \overline{SU(3)} \supset SO(3) & | [N] (\overline{\lambda}, \overline{\mu}) \overline{K} L \rangle & \text{Oblate-deformed rotor} \\ U(6) \supset SO(6) \supset SO(5) \supset SO(3) & | [N] \sigma \tau n_{\Delta} L \rangle & \gamma\text{-unstable deformed rotor} \end{array}$

Geometry

Global min: equilibrium shape (β_0, γ_0)

 $\beta_0 = 0$ spherical $\beta_0 > 0$ deformed: $\gamma_0 = 0$ (prolate), $\gamma_0 = \pi/3$ (oblate), $0 < \gamma_0 < \pi/3$ (triaxial)

Intrinsic state ground band $|\beta_0,\gamma_0; N\rangle$, L-projected states $|\beta_0,\gamma_0; N,x,L\rangle$

	$U(6) \supset \mathbf{G}_1 \supset G_2 \supset \dots \ SO(3)$	$ N, \lambda_1, \lambda_2, \dots, L\rangle$
U(5)	$\beta_0 = 0$	n _d = 0
SU(3)	$(\beta_0 = \sqrt{2}, \gamma_0 = 0)$	$(\lambda,\mu) = (2N,0)$
SU(3)	$(\beta_0 = \sqrt{2}, \gamma_0 = \pi/3)$	$(\overline{\lambda},\overline{\mu}) = (0,2N)$
SO(6)	$(\beta_0 = 1, \gamma_0 \text{ arbitrary})$	$\sigma = N$

- Dynamical symmetry corresponds to a particular shape (β_0, γ_0)
- $|\beta_0,\gamma_0; N\rangle$ lowest (highest) weight state in a particular irrep λ_1 of leading subalgebra G_1

Dynamical Symmetry

 $U(6) \supset G_1 \supset G_2 \supset \dots SO(3)$

$$|N, \lambda_1, \lambda_2, \dots, L\rangle$$

- Complete solvability
- Good quantum numbers for all states
- DS: benchmark for a single shape

 $[G_1 = U(5), SU(3), \overline{SU(3)}, SO(6)]$

Spherical, prolate-, oblate-, y-unstable deformed

Dynamical Symmetry

$$U(6) \supset G_1 \supset G_2 \supset \dots SO(3)$$

$$|N, \lambda_1, \lambda_2, \dots, L\rangle$$

- Complete solvability
- Good quantum numbers for all states
- DS: benchmark for a single shape

 $[G_1 = U(5), SU(3), \overline{SU(3)}, SO(6)]$

Spherical, prolate-, v-unstable deformed

Partial Dynamical Symmetry

- Some states solvable and/or with good quantum numbers
- G₁, G₂ incompatible (non-commuting) symmetries
- PDS: benchmark for shape coexistence

 β_2

 β_3

 β_1

Construction of Hamiltonians with a single PDS

$$\begin{array}{ll} G_{\mathrm{dyn}} \supset \ G \ \supset \cdots \supset G_{\mathrm{sym}} \\ \hline \left[\mathbf{N}\right] & \langle \mathbf{\Sigma} \rangle & \Lambda \end{array}$$

$$\hat{T}_{\left[n\right] \langle \sigma \rangle \lambda} | \left[\mathbf{N}\right] \langle \mathbf{\Sigma}_{\mathbf{0}} \rangle \Lambda \rangle = \mathbf{0} \qquad \text{for all possible } \Lambda \text{ contained} \\ \text{in the irrep } \langle \mathbf{\Sigma}_{\mathbf{0}} \rangle \text{ of } \mathbf{G} \end{aligned}$$

$$\hat{T}_{\left[n\right] \langle \sigma \rangle \lambda} | \left[\mathbf{N}\right] \langle \mathbf{\Sigma}_{\mathbf{0}} \rangle \rangle = \mathbf{0} \qquad | \text{Lowest weight state } \rangle$$

• Condition is satisfied if $\langle \sigma \rangle \otimes \langle \Sigma_0 \rangle \notin [N-n]$

$$\hat{H} = \sum_{\alpha,\beta} u_{\alpha\beta} \hat{T}^{\dagger}_{\alpha} \hat{T}_{\beta}$$

n-particle

operator

annihilation

Equivalently:

DS is **broken** but solvability of states with $\langle \Sigma \rangle = \langle \Sigma_0 \rangle$ Is preserved Construction of Hamiltonians with a single PDS

$$\begin{array}{c|c} G_{\rm dyn} \supset \ G \ \supset \cdots \supset G_{\rm sym} \\ \hline \left[\mathbf{N} \right] & \langle \mathbf{\Sigma} \rangle & \Lambda \\ \\ \hat{T}_{\left[n \right] \left\langle \sigma \right\rangle \lambda} | \left[\mathbf{N} \right] \left\langle \mathbf{\Sigma}_{\mathbf{0}} \right\rangle \Lambda \right\rangle = \mathbf{0} \\ \hline \hat{T}_{\left[n \right] \left\langle \sigma \right\rangle \lambda} | \left[\mathbf{N} \right] \left\langle \mathbf{\Sigma}_{\mathbf{0}} \right\rangle = \mathbf{0} \\ \end{array} \begin{array}{c} \text{for all possible } \Lambda \text{ contained} \\ \text{in the irrep } \left\langle \mathbf{\Sigma}_{\mathbf{0}} \right\rangle \text{ of } \mathbf{G} \\ \\ \hline \hat{T}_{\left[n \right] \left\langle \sigma \right\rangle \lambda} | \left[\mathbf{N} \right] \left\langle \mathbf{\Sigma}_{\mathbf{0}} \right\rangle = \mathbf{0} \\ \end{array}$$

• Condition is satisfied if $\langle \sigma \rangle \otimes \langle \Sigma_0 \rangle \notin [N-n]$

 $\hat{H} = \sum_{\alpha,\beta} u_{\alpha\beta} \hat{T}_{\alpha}^{\dagger} \hat{T}_{\beta}$ $\bullet \text{PDS Hamiltonian} \quad \hat{H}' = \hat{H} + \hat{H}_{c} \quad \text{Intrinsic collective resolution}$

Intrinsic part: $H | [N] \langle \Sigma_0 \rangle \Lambda \rangle = 0$

n-particle

operator

annihilation

Equivalently:

Collective part: H_c composed of Casimir operators of conserved $G_i \subset G$ in the chain

Multiple PDS and Shape Coexistence

$$U(6) \supset G_1 \supset G_2 \supset \ldots \supset SO(3) \qquad |N, \lambda_1, \lambda_2, \ldots, L\rangle \qquad (\beta_1, \gamma_1)$$

Single PDS Single shape

$$\hat{H}|\beta_1,\gamma_1;N,\lambda_1=\Lambda_0,\lambda_2,\ldots,L\rangle=0$$

Multiple PDS and Shape Coexistence

$$U(6) \supset G_1 \supset G_2 \supset \ldots \supset SO(3) \qquad |N, \lambda_1, \lambda_2, \ldots, L\rangle \qquad (\beta_1, \gamma_1)$$

Single PDS Single shape

$$\hat{H}|\beta_1,\gamma_1;N,\lambda_1=\Lambda_0,\lambda_2,\ldots,L\rangle=0$$

$$U(6) \supset G_1 \supset G_2 \supset \ldots \supset SO(3) \qquad |N, \lambda_1, \lambda_2, \ldots, L\rangle \qquad (\beta_1, \gamma_1, \beta_2, \beta_1)$$
$$U(6) \supset G'_1 \supset G'_2 \supset \ldots \supset SO(3) \qquad |N, \sigma_1, \sigma_2, \ldots, L\rangle \qquad (\beta_2, \gamma_2)$$

Multiple PDS Multiple shapes

$$\begin{cases} \hat{H}|\beta_1, \gamma_1; N, \lambda_1 = \Lambda_0, \lambda_2, \dots, L \rangle = 0\\ \hat{H}|\beta_2, \gamma_2; N, \sigma_1 = \Sigma_0, \sigma_2, \dots, L \rangle = 0 \end{cases}$$

 $\mathrm{G}_1\neq\mathrm{G}_1'$

Critical-point Hamiltonian $\hat{H}' = \hat{H} + \hat{H}_c$ G₁ -PDS & G'₁ -PDS

Intrinsic part: \hat{H} determines $E(\beta,\gamma)$ band structure Collective part: $\hat{H}_c = \sum_{G_i} a_{G_i} \hat{C}_{G_i}$ rotational splitting $\widehat{G}_i \xrightarrow{}$ conserved \widehat{G}_i in both chains **Departure from the Critical Point**

$$U(6) \supset G_1 \supset G_2 \supset \ldots \supset SO(3) \qquad |N, \lambda_1, \lambda_2, \ldots, L\rangle \qquad (\beta_1, \gamma_1)$$
$$U(6) \supset G'_1 \supset G'_2 \supset \ldots \supset SO(3) \qquad |N, \sigma_1, \sigma_2, \ldots, L\rangle \qquad (\beta_2, \gamma_2)$$

 $\mathrm{G}_1\neq\mathrm{G}_1'$

$$\hat{H}' = \hat{H}'_{\rm cp} + \alpha \, \hat{C}[\mathbf{G}_1]$$

 $\hat{H}' = \hat{H}'_{\rm cp} + \alpha \, \hat{C}[\mathbf{G}'_1]$

Symmetry Approach to Shape-Coexistence

 $U(6) \supset U(5) \supset SO(5) \supset SO(3)$ $U(6) \supset SU(3) \supset SO(3)$ $U(6) \supset \overline{SU(3)} \supset SO(3)$ U(6) \supset SO(6) \supset SO(5) \supset SO(3) γ -unstable deformed rotor β =1, γ arbitrary

Spherical vibrator **Prolate-deformed rotor** $\beta = \sqrt{2}, \gamma = 0$ Oblate-deformed rotor $\beta = \sqrt{2}, \gamma = \pi/3$

 $\beta = 0$

Multiple PDS and Multiple Shapes

- $G_1 = U(5)$ $G_2 = \frac{SU(3)}{G_1 = SU(3)}$ $G_1 = \frac{SU(3)}{G_2 = SU(3)}$ $G_1 = U(5)$ $G_2 = SO(6)$
 - spherical prolate prolate – oblate & spherical - γ -unstable +

Triple coexistence

 $G_1 = U(5)$ $G_2 = SU(3)$ $G_3 = \overline{SU(3)}$ spherical-prolate-oblate *

- Leviatan, Shapira, PRC 93, 051302(R) (2016)
- Leviatan, Gavrielov, Phys. Scr. 92, 114005 (2017) arXiv:1803.03982 [nucl-th] (2018)

Prolate-Oblate Shape Coexistence

Intrinsic part of C.P. Hamiltonian

$$\hat{H}|N, (\lambda, \mu) = (2N, 0), K = 0, L\rangle = 0$$

 $\hat{H}|N, (\bar{\lambda}, \bar{\mu}) = (0, 2N), \bar{K} = 0, L\rangle = 0$

 $\Gamma = \cos 3\gamma$

 $\hat{H} = h_0 P_0^{\dagger} \hat{n}_s P_0 + h_2 P_0^{\dagger} \hat{n}_d P_0 + \eta_3 G_3^{\dagger} \cdot \tilde{G}_3 \qquad P_0^{\dagger} = d^{\dagger} \cdot d^{\dagger} - 2(s^{\dagger})^2 \qquad G_{3,\mu}^{\dagger} = \sqrt{7} [(d^{\dagger} d^{\dagger})^{(2)} d^{\dagger}]_{\mu}^{(3)}$

Energy Surface $\tilde{E}(\beta,\gamma) = (1+\beta^2)^{-3} \left\{ (\beta^2 - 2)^2 \left[h_0 + h_2 \beta^2 \right] + \eta_3 \beta^6 \sin^2(3\gamma) \right\}$ = $z_0 + (1+\beta^2)^{-3} [A\beta^6 + B\beta^6 \Gamma^2 + D\beta^4 + F\beta^2]$

Two degenerate P-O global minima

 $(\beta = \sqrt{2}, \gamma = 0)$ and $(\beta = \sqrt{2}, \gamma = \pi/3)$ [or equivalently $(\beta = -\sqrt{2}, \gamma = 0)$]

oblate-prolate

Saddle points support a barrier separating the various minima

Normal modes:

$$\epsilon_{\beta 1} = \epsilon_{\beta 2} = \frac{8}{3}(h_0 + 2h_2)N^2$$
$$\epsilon_{\gamma 1} = \epsilon_{\gamma 2} = 4\eta_3 N^2$$

 $T(E2) = e_B(d^{\dagger}s + s^{\dagger}\tilde{d}) \quad (1,1) \oplus (2,2) \text{ tensor}$ E2 selection rule: $g_1 \nleftrightarrow g_2$

$$Q_L = \mp e_B \sqrt{\frac{16\pi}{40}} \frac{L}{2L+3} \frac{4(2N-L)(2N+L+1)}{3(2N-1)}$$

 $B(E2;g_i, L+2 \rightarrow g_i, L) =$

ANALYTIC expressions !

 $e_B^2 \frac{3(L+1)(L+2)}{2(2L+3)(2L+5)} \frac{(4N-1)^2(2N-L)(2N+L+3)}{18(2N-1)^2}$

 $T(E0) \propto \hat{n}_d$ (0,0) \oplus (2,2) tensor E0 selection rule: $g_1 \nleftrightarrow g_2$

Spherical vibrator Prolate-deformed rotor Oblate-deformed rotor

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$n_d = 2 {}^{4^+}_{2^+}$ $n_d = 1 {}^{2^+}_{2^+}$	0+	6^+ 4^+ 2^+ 0^+	$\begin{array}{c} 4^{+}_{2^{+}_{-}} 4^{+}_{3^{+}_{-}_{-}} \\ 2^{+}_{-} 2^{+} \\ 0^{+} \end{array}$ (2N-4,2)	
<u>SU(3)</u> (0,2N)	n _d = 0 0+	U(5)	(2N,0)		SU(3)

Spherical-Prolate-Oblate Shape Coexistence

Intrinsic part of C.P. Hamiltonian

$$\hat{H}|N, (\lambda, \mu) = (2N, 0), K = 0, L\rangle = 0$$

$$\hat{H}|N, (\bar{\lambda}, \bar{\mu}) = (0, 2N), \bar{K} = 0, L\rangle = 0$$

$$\hat{H}|N, n_d = 0, \tau = 0, L = 0\rangle = 0$$

 $\hat{H} = h_2 P_0^{\dagger} \hat{n}_d P_0 + \eta_3 G_3^{\dagger} \cdot \tilde{G}_3 \qquad P_0^{\dagger} = d^{\dagger} \cdot d^{\dagger} - 2(s^{\dagger})^2 \qquad G_{3,\mu}^{\dagger} = \sqrt{7}[(d^{\dagger}d^{\dagger})^{(2)}d^{\dagger}]_{\mu}^{(3)}$ Energy Surface $\tilde{E}(\beta,\gamma) = \beta^2 [h_2(\beta^2 - 2)^2 + \eta_3\beta^4 \sin^2(3\gamma)](1+\beta^2)^{-3}$ • Three degenerate S-P-O global minima: β =0, (β = ± $\sqrt{2}$, γ = 0)
Complete Hamiltonian $\hat{H}' = h_2 P_0^{\dagger} \hat{n}_d P_0 + \eta_3 G_3^{\dagger} \cdot \tilde{G}_3 + \alpha \hat{\theta}_2 + \rho \hat{C}_2[SO(3)]$

oblate-spherical-prolate

Triple coexistence

Saddle points support a barrier separating the various minima

Normal modes:

$$\epsilon_{\beta 1} = \epsilon_{\beta 2} = \frac{16}{3} h_2 N^2$$
$$\epsilon_{\gamma 1} = \epsilon_{\gamma 2} = 4\eta_3 N^2$$
$$\epsilon = 4h_2 N^2$$

Ε(β,γ)

E(β,γ=0)

bandhead spectrum

Triple Spherical-Prolate-Oblate Coexistence

U(5) decompositon

P-O bands show similar behavior as in P-O coexistence

New aspect: occurrence of spherical type of states $(n_d=L=0)$ and $(n_d=1,L=2)$ pure U(5)-DS Higher spherical states: pronounced (~70%) $n_d=2$

$$\begin{array}{c}
 E & \beta_2 \\
 0.1 & \gamma_2 \\
 0.1 & n_d = 1 \\
 0.0 & g_2 \\
 g_2 \\
 n_d = 0 \\
 -g_1
\end{array}$$

oblate spherical prolate

Coexisting Partial Dynamical Symmetries

The purity of selected sets of states with respect to SU(3), SU(3) and U(5), in the presence of other mixed states, are the hallmarks of coexisting SU(3)-PDS, SU(3)-PDS and U(5)-PDS

$$T(E2) = e_B(d^{\dagger}s + s^{\dagger}\tilde{d}) \qquad \Delta n_d = \pm 1$$

Spherical \rightarrow deformed E2 rates very weak

Deformed SU(3) & SU(3) DS states $(g_1 \rightarrow g_1, g_2 \rightarrow g_2) Q_L \& B(E2) KNOWN!$

Spherical U(5)-DS states ($n_d=1 \rightarrow n_d=0$)

 $Q(n_d=1,L=2) = 0$

$$B(E2; n_d = 1, L = 2 \rightarrow n_d = 0, L = 0) = e_B^2 N$$

 $T(E0) \propto \hat{n}_d$ diagnal in n_d

No E0 transitions involving these spherical states

The spherical states exhaust the $(n_d=0,1)$ irreps of U(5)

The $n_d=2$ component in the (L=0,2,4) states of the g_1 and g_2 bands is extremely small

U(5) and SO(6) Dynamical Symmetries

 $\mathsf{U}(6) \supset \mathsf{U}(5) \supset \mathsf{SO}(5) \supset \mathsf{SO}(3)$ $|[N] n_d \tau n_A L\rangle$ Spherical vibrator $U(6) \supset SO(6) \supset SO(5) \supset SO(3)$ $|[N] \sigma \tau n_{\Lambda} L \rangle$ γ -unstable rotor 4* $n_d = 2 \quad 4^+_{2^+}$ 0+____ common segment $SO(5) \supset SO(3)$ σ=N-2 $n_d = 1 2^+$ U(5) **SO(6)** σ=N $n_{d} = 0$ 0+

U(5) and SO(6) Dynamical Symmetries

Spherical and γ -unstable deformed Shape Coexistence

Intrinsic part of C.P. Hamiltonian

$$\begin{cases} \hat{H}|N, \sigma = N, \tau, L\rangle = 0\\ \hat{H}|N, n_d = \tau = L = 0\rangle = 0 \end{cases}$$

$$\hat{H} = r_2 R_0^{\dagger} \hat{n}_d R_0 \qquad R_0^{\dagger} = d^{\dagger} \cdot d^{\dagger} - (s^{\dagger})^2$$

Energy Surface $\tilde{E}(\beta) = r_2 \beta^2 (\beta^2 - 1)^2 (1 + \beta^2)^{-3}$ = $(1 + \beta^2)^{-3} [A\beta^6 + D\beta^4 + F\beta^2]$

Two degenerate spherical and γ-unstable deformed global minima: β=0 and β=1

Spherical & y-unstable deformed

Energy surface independent of γ SO(5) symmetry

a barrier separates the spherical and γ-unstable deformed minima

0.5V 0.4β 0.3**Ε**(β,γ) 0.20.10.0 0.5 1.0 1.5 2.0 2.5 3.0 E 0.8 $E(\beta,\gamma=0)$ 0.4 0.0 0 β -1 1 E bandhead 0.1 spectrum $_{n_d=1} n_d=1$ $_{n_d=0}$ 0.0 g

Normal modes:

$$\epsilon_{\beta} = 2r_2 N^2$$
$$\epsilon = r_2 N^2$$

0

Complete Hamiltonian

$$\hat{H}' = r_2 R_0^{\dagger} \hat{n}_d R_0 + \rho_5 \hat{C}_2[SO(5)] + \rho_3 \hat{C}_2[SO(3)]$$

SO(6) decompostion

- g-band: pure SO(6)-DS (σ=N)
- Excited $\boldsymbol{\beta}$ bands: mixed
 - \Rightarrow SO(6)-PDS

U(5) decompostion

- Spherical states: pure U(5)-DS with ($n_d=\tau=L=0$) & ($n_d=\tau=1,L=2$)
- Higher spherical states: pronounced & coherent mixing

\Rightarrow U(5)-PDS

Coexisting U(5)-PDS & SO(6)-PDS

$$T(E2) = e_B(d^{\dagger}s + s^{\dagger}\tilde{d}) \quad \Delta \sigma = 0, \ \Delta n_d \& \Delta \tau = \pm 1$$

deformed \rightarrow spherical E2 rates very weak g-band exhausts the $\sigma=N$ irrep of SO(6)

Deformed SO(6)-DS states ($g \rightarrow g$)

$$Q(\sigma=N,\tau)=0$$

$$B(E2; g; \tau + 1, L' = 2\tau + 2 \rightarrow g; \tau, L = 2\tau)$$

= $e_B^2 \frac{\tau + 1}{2\tau + 5} (N - \tau) (N + \tau + 4)$

 $T(E0) \propto \hat{n}_d$ diagnal in n_d

No E0 transitions involving these spherical states

Spherical U(5)-DS states ($n_d=1 \rightarrow n_d=0$)

 $Q(n_d=1,L=2) = 0$

 $B(E2; n_d = 1, L = 2 \rightarrow n_d = 0, L = 0) = e_B^2 N$ KNOWN !

The Cd problem

Most states good spherical vibrator $B(E2; 2_1 \rightarrow 0_1) = 27.0$ (8) W.u.

BUT:	[W.u.] E	EXP	U(5)	
	$B(E2; 0_3 \to 2_1) < 7$	7.9	46.29.	$(n_d = 2 \rightarrow n_d = 1)$
	$B(E2; \frac{2}{5} \rightarrow 4_1) < \xi$	5	19.84	$(n_d = 3 \rightarrow n_d = 2)$
	$B(E2; \frac{2}{5} \rightarrow 2_2) < 0$.7 ^{+0.5} -0.6	11.02	
	$B(E2; 0_4 \rightarrow 2_2) \text{ sm}$	nall BR	57.86	Garret et al. PRC (2012)

• Attempted solution: normal-intruder mixing

Requires **strong** (maximal) **mixing** to reproduce the observed pattern

B(E2; $0_3 \rightarrow 2_1$) < 7.9 W.u. $(n_d = 2 \rightarrow n_d = 1)$

Strong normal-intruder mixing is unsatisfactory

- It results in discrepancy in the decay pattern of n_d=3 states (enhanced intruder-normal E2 decays in contrast to exp)
- Unmixed IBM calculations agree with data for (n_d=3, L=6,4,3) yrast states, but seriously disagree for non-yrast states (n_d=2,L=0) and (n_d=3,L=0,2)
- E(intruder) rises away from neutron midshell (¹¹⁴Cd) ⇒ smaller mixing. In contrast, experimentally (Garrett, Batchelder PRC 2008, 2010, 2012, 2014) the discrepancy in two- & three-phonon states persists for ^ACd (A=110-126)

Strong normal-intruder mixing refuted

- Claims: "Breakdown of vibrational motion in Cd isotopes" (Garrett PRC 2008) "Need for a paradigm change" "Serious questioning on the validity of the multi-phonon interpretation"
- Alternatives: γ-soft rotor (Garrett, PRC 2012), "Tidal wave" (Frauendorf 2011), EFT (Papenbrock PRC 2015)
- This talk: an approach to the problem based on partial dynamical symmetry

 $\mathsf{U(6)} \supset \mathsf{U(5)} \supset \mathsf{SO(5)} \supset \mathsf{SO(3)} \qquad | [\mathsf{N}] \mathsf{n}_{\mathsf{d}} \tau \mathsf{n}_{\Delta} \mathsf{L} \rangle$

$$n_d = 1$$
 $\frac{2_1}{\tau} = 1$

$$n_d = 0 \qquad \frac{0_1}{\tau} = 0$$

good U(5) Class A: $n_d = \tau = 0, 1, 2, 3 (n_\Delta = 0)$

 $0_1(0), 2_1(658), 4_1(1542), 2_2(1476)$ $6_1(2480), 4_2(2220), 3_1(2163)$

broken U(5) $\begin{cases} \text{Class B: } n_d = \tau + 2 = 2,3 \text{ (} n_\Delta = 0\text{)} \\ \text{Class C: } n_d = \tau = 3 \text{ (} n_\Delta = 1\text{)} \end{cases}$

0₃(1731), 2₅(2356) 0₄(2079)

- Some states with good U(5) symmetry
- Some states break U(5) symmetry

 \Rightarrow Partial Dynamical Symmetry

$$U(6) \supset U(5) \supset SO(5) \supset SO(3) \quad |[N] n_{d} \tau n_{\Delta} L \rangle$$

$$G_{0}^{\dagger} = [(d^{\dagger}d^{\dagger})^{(2)}d^{\dagger}]^{(0)}$$

$$K_{0}^{\dagger} = s^{\dagger}(d^{\dagger}d^{\dagger})^{(0)}$$

$$G_{0}|[N], n_{d} = \tau, \tau, n_{\Delta} = 0, L \rangle = 0 \quad L = \tau, \tau + 1, \dots, 2\tau - 2, 2\tau \quad \text{(Talmi 2004)}$$

 $K_0|[N], n_d = \tau, \tau, n_\Delta, L\rangle = 0$

$$\hat{V}_0 = r_0 \, G_0^{\dagger} G_0 + e_0 \left(G_0^{\dagger} K_0 + K_0^{\dagger} G_0
ight)$$

 $\hat{H}_{PDS} = \hat{H}_{DS} + \hat{V}_0$ U(5)-PDS Hamiltonian

Class A: Solvable $|N, n_d = \tau, \tau, n_{\Delta} = 0, L$ $0_1(0), 2_1(658), 4_1(1542), 2_2(1476)$ $0_1(2480), 4_2(2220), 3_1(2163)$ Class B: Class C: Mixed $0_3(1731), 2_5(2356)$ $0_4(2079)$

$$\hat{H} = \hat{H}_{\text{normal}}^{(N)} + \hat{H}_{\text{intruder}}^{(N+2)} + \hat{V}_{\text{mix}}$$

IBM with configuration mixing (CM) (Duval, Barrett, Van Isacker, Garcia Ramos,...)

$$\hat{H} = \hat{H}_{\text{normal}}^{(N)} + \hat{H}_{\text{intruder}}^{(N+2)} + \hat{V}_{\text{mix}}$$

$$\hat{H}_{\text{normal}}^{(N)} = \hat{H}_{\text{PDS}}$$

$$\hat{H}_{\text{intruder}}^{(N+2)} = \kappa \hat{Q} \cdot \hat{Q} + \Delta$$

$$\hat{V}_{\rm mix} = \alpha \left[(d^{\dagger}d^{\dagger})^{(0)} + (s^{\dagger})^2 + \text{H.c.} \right]$$

$$\hat{T}(E2) = e_B^{(N)} \,\hat{Q}^{(N)} + e_B^{(N+2)} \,\hat{Q}^{(N+2)} \,,$$

$$\hat{Q} = d^{\dagger}s + s^{\dagger}\tilde{d}$$

Normal and intruder levels in ¹¹⁰Cd

Normal and intruder levels in ¹¹⁰Cd

Majority of normal states are pure wrt U(5) (> 97%) with weak normal-intruder mixing

$$\begin{array}{ll} 0_3(1731): & (0.9\% \ n_d=2) \ , & (94\% \ n_d=3) \ , & (5.1\% \ intruder) \\ 0_4(2079): & (79.8\% \ n_d=2) \ , (2\% \ n_d=3), & (18\% \ intruder) \\ 2_5(2356): & (1.2\% \ n_d=3) \ , (95.8\% \ n_d=4) \ , (2.9\% \ intruder) \end{array}$$

L_i	L_f	EXP	U(5)-DS	U(5)-PDS-CM
2_{1}^{+}	0^+_1	27.0 (8)	27.00	27.00
4_{1}^{+}	2_{1}^{+}	42 (9)	46.29	45.93
2_{2}^{+}	2^+_1	30(5)	46.29	46.32
	0^+_1	$1.35 (20); 0.68 (14)^a$	0.00	0.00
0^{+}_{3}	2^{+}_{2}	$< 1680^{a}$	0.00	55.95
	2_{1}^{+}	$< 7.9^{a}$	46.29	0.25
6_{1}^{+}	4^+_1	40 (30); 62 (18) ^{a}	57.86	55.30
	4_{2}^{+}	$< 5^a$	0.00	0.00
	$4^+_{3;i}$	14 (10); 36 (11) ^{a}		2.39
4_{2}^{+}	4_{1}^{+}	12^{+4}_{-6}	27.55	27.45
	2_{2}^{+}	32^{+10}_{-14}	30.31	30.03
	2^+_1	$0.20\substack{+0.06 \\ -0.09}$	0.00	0.00
	$2^+_{3;i}$	$< 0.5^{a}$		0.005
3_{1}^{+}	4^+_1	$5.9^{+1.8}_{-4.6}$	16.53	16.48
	2_{2}^{+}	32^{+8}_{-24}	41.33	41.12
	2^+_1	$1.1^{+0.3}_{-0.8}; 0.85 \ (25)^a$	0.00	0.00
	$2^+_{3;i}$	$< 5^a$		0.012
0^+_4	2^{+}_{2}	$[< 0.65^{a}]$	57.86	1.24
	2^+_1	$[0.010^{a}]$	0.00	31.76
	$2^+_{3;i}$	$[100^{a}]$		16.32
2_{5}^{+}	0^+_3	24.2 $(22)^a$	27.00	22.28
	4_{1}^{+}	$<5^a$	19.84	0.19
	2_{2}^{+}	$^{a}0.7^{+0.5}_{-0.6}$	11.02	0.12
	2_{1}^{+}	$2.8^{+0.6}_{-1.0}$	0.00	0.00
	$2^+_{3;i}$	$< 5^a$		0.002
	$0^+_{2;i}$	$< 1.9^{a}$		0.20

Normal and intruder levels in ¹¹⁰Cd

[W.u.]	EXP	U(5)-PDS-CM
$B(E2;0_3\to2_1)$	< 7.9	0.25
$B(E2; 2_5 \to 4_1)$	< 5	0.19
B(E2; $2_5 \rightarrow 2_2$)	< 0.7 ^{+0.5} -0	0.6 0.12

L_i	L_{f}	EXP	U(5)-PDS-CM
$0^+_{2;i}$	2_{1}^{+}	$< 40^{a}$	14.18
$2^+_{3;i}$	$0^+_{2;i}$	$29 (5)^a$	29.00
	0^+_1	$0.31\substack{+0.08 \\ -0.12}$	0.08
	2_{1}^{+}	$0.7\substack{+0.3 \\ -0.4}$	0.00
	2^{+}_{2}	$< 8^a$	0.96
$2^+_{4;i}$	2_{1}^{+}	$0.019\substack{+0.020\\-0.019}$	0.10
$4^+_{3;i}$	2_{1}^{+}	$0.22\substack{+0.09\\-0.19}$	0.49
	2_{2}^{+}	$2.2^{+1.4}_{-2.2}$	0.00
	$2^+_{3;i}$	120^{+50}_{-110}	42.62
	4_{1}^{+}	$2.6^{+1.6}_{-2.6}$	0.00

PDS and coexisting normal and intruder states

- Vibrational structure of ¹¹⁰Cd by means of **U(5) PDS**
- The PDS Hamiltonian retains good U(5) symmetry for yrast states, but breaks it in selected non-yrast states
- The **mixing** with the **intruder** levels is **weak**, and affects mainly the broken U(5)-DS states
- Most low-lying normal levels maintain the vibrational character.
 Only particular states exhibit a departure from this behavior, in line with the empirical data
- Calculations are underway (Gavrielov, Garcia-Ramos, Van Isacker, A.L.) to see if this approach can be implemented in other neutron-rich Cd isotopes

- A symmetry-based approach to shape coexistence Ingredients: spectrum generating algebra with several DS chains geometry: coherent states intrinsic-collective resolution of the Hamiltonian
- A single number-conserving rotational invariant H which conserves the dynamical symmetry for selected bands
 Multiple Partial Dynamical Symmetries relevant for shape-coexistence

U(5) and SU(3) PDS SU(3) and $\overline{SU(3)}$ PDS U(5), SU(3) and $\overline{SU(3)}$ PDS U5) and SO(6) PDS

spherical-prolate prolate-oblate spherical-prolate-oblate spherical - γ-unstable deformed

 Closed expressions for quadrupole moments and B(E2) values; selection rules for E2 & E0 transitions and isomeric states

Concluding Remarks

- Structure away from the critical point, can be studied by adding the Casimir operator of a particular DS chain
- PDS: solvable bands are unmixed.
 Band mixing can be incorporated by including in H kinetic terms which do not affect E(β,γ) but, if strong, may destroy the PDS

- Coexisting normal and intruder states in nuclei can exibit PDS
- Study of shape-coexistence and exotic structure in nuclei provides a fertile ground for exploring the role of competing and persisting symmetries and for the development of generalized notions of symmetries

Thank you