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Shape Coexistence in Nuclei 

Exp:         prolate-oblate                      Kr, Se, Hg  neutron-deficient isotopes
spherical-prolate-oblate       186Pb 
spherical-prolate Sr neutron-rich isotopes 96Zr, 78Ni

• Shell model approach

- Multiparticle-multihole intruder excitations across shell gaps
- Drastic truncation of large SM spaces

• Mean-field approach (EDF)

- Coexisting shapes associated with different minima of an energy surface
- Beyond MF methods: restoration of broken symmetries

• Symmetry-based approach

- Dynamical symmetries ↔ phases
- Geometry: coherent (intrinsic) states



Dynamical Symmetry

• Solvability of the complete spectrum

• Quantum numbers for all eigenstates



Dynamical Symmetry

• Solvability of the complete spectrum

• Quantum numbers for all eigenstates

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) [N] nd τ n∆ L 〉 Spherical vibrator

U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) [N] σ τ n∆ L 〉 γ-unstable deformed rotor     

• IBM:  s (L=0) , d (L=2) bosons, N conserved (Arima, Iachello 75)

U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Prolate-deformed rotor
U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Oblate-deformed rotor

Gdyn = U(6), Gsym = SO(3)



Geometry

Coherent state

Global min: equilibrium shape (β0,γ0)

Energy surface 

β0 = 0 spherical
β0 > 0 deformed: γ0 =0 (prolate), γ0 = π/3 (oblate),  0 < γ0 < π/3 (triaxial)

U(5) β0 = 0                                     nd = 0
SU(3) (β0 = √2, γ0 = 0)                      (λ,µ) = (2N,0) 
SU(3) (β0 = √2, γ0 = π/3)                   (λ,µ) = (0,2N) 
SO(6) (β0 = 1, γ0 arbitrary)                σ = N

Intrinsic state ground band |β0,γ0; N〉,      L-projected states |β0,γ0; N,x,L〉

• |β0,γ0; N〉 lowest (highest) weight state in a particular irrep λ1 of leading subalgebra G1

• Dynamical symmetry corresponds to a particular shape (β0,γ0)

U(6) ⊃ G1 ⊃ G2 ⊃ … SO(3)               |N, λ1, λ2,…,L〉



Dynamical Symmetry

• Complete solvability
• Good quantum numbers for all states
• DS: benchmark for a single shape

U(6) ⊃ G1 ⊃ G2 ⊃ … SO(3)               |N, λ1, λ2,…,L〉

Spherical, prolate- , oblate-, γ-unstable deformed
[G1 = U(5), SU(3), SU(3), SO(6)]



Dynamical Symmetry

• Complete solvability
• Good quantum numbers for all states
• DS: benchmark for a single shape

U(6) ⊃ G1 ⊃ G2 ⊃ … SO(3)               |N, λ1, λ2,…,L〉

Spherical, prolate- , oblate-, γ-unstable deformed
[G1 = U(5), SU(3), SU(3), SO(6)]

Partial Dynamical Symmetry

• Some states solvable and/or with good quantum numbers
• G1, G2 incompatible (non-commuting) symmetries
• PDS: benchmark for shape coexistence



Construction of Hamiltonians with a single PDS 

[N] 〈Σ〉 Λ

|[N] 〈Σ0〉 Λ〉 = 0 
n-particle 
annihilation 
operator

for all possible Λ contained 
in the irrep 〈Σ0〉 of G

• Condition is satisfied if  〈σ〉⊗〈Σ0〉 ∉ [N-n]
DS is broken but 
solvability of states with 〈Σ〉 = 〈Σ0〉 Is preserved

|[N] 〈Σ0〉 〉 = 0 Lowest weight state 〉Equivalently:



Construction of Hamiltonians with a single PDS 

[N] 〈Σ〉 Λ

|[N] 〈Σ0〉 Λ〉 = 0 
n-particle 
annihilation 
operator

for all possible Λ contained 
in the irrep 〈Σ0〉 of G

• Condition is satisfied if  〈σ〉⊗〈Σ0〉 ∉ [N-n]
DS is broken but 
solvability of states with 〈Σ〉 = 〈Σ0〉 Is preserved

|[N] 〈Σ0〉 〉 = 0 Lowest weight state 〉Equivalently:

• PDS Hamiltonian

Intrinsic part:   H|[N] 〈Σ0〉 Λ〉 = 0 
Collective part:  Hc composed of Casimir operators of conserved Gi ⊂ G in the chain  

Intrinsic collective resolution



Multiple PDS and Shape Coexistence 

(β1,γ1)

Single PDS
Single shape



Multiple PDS and Shape Coexistence 

(β1,γ1)

Single PDS
Single shape

(β1,γ1)
(β2,γ2)

Multiple PDS
Multiple shapes {

Collective part:                                        rotational splitting

Critical-point Hamiltonian
G1 -PDS & G’1 -PDS

Intrinsic part:         determines E(β,γ)      band structure

conserved Gi in both chains



Departure from the Critical Point

(β1,γ1)
(β2,γ2)



Symmetry Approach to Shape-Coexistence 

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) Spherical vibrator                β = 0 
U(6) ⊃ SU(3) ⊃ SO(3) Prolate-deformed rotor        β = √2, γ = 0

U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) γ-unstable deformed rotor   β =1, γ arbitrary 

Multiple PDS and Multiple Shapes

G1 = U(5) G2 = SU(3) spherical – prolate
G1 = SU(3) G2 = SU(3) prolate – oblate ♣
G1 = U(5) G2 = SO(6) spherical - γ-unstable ♣

G1 = U(5)  G2 = SU(3) G3 = SU(3) spherical-prolate-oblate ♣

U(6) ⊃ SU(3) ⊃ SO(3) Oblate-deformed rotor         β = √2, γ = π/3

Triple coexistence 

♣ Leviatan, Shapira, PRC 93, 051302(R) (2016) 

♣ Leviatan, Gavrielov,  Phys. Scr. 92, 114005 (2017)                                    
arXiv:1803.03982 [nucl-th] (2018)                            



(0,2N)

(2,2N-4)

(2N,0)

(2N-4,2)

U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Prolate-deformed rotor
U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Oblate-deformed rotor

SU(3) and SU(3) Dynamical Symmetries

SU(3)SU(3) DS spectra are identical

Quadrupole moments 
of corresponding states 
differ in sign prolateoblate



{
Intrinsic part of C.P. Hamiltonian

Energy Surface

(0,2N)

(2,2N-4)

(2N,0)

(2N-4,2)

U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Prolate-deformed rotor
U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Oblate-deformed rotor

SU(3) and SU(3) Dynamical Symmetries

SU(3)SU(3) DS spectra are identical

Quadrupole moments 
of corresponding states 
differ in sign 

Prolate-Oblate Shape Coexistence

• Two degenerate P-O global minima 
(β=√2,γ = 0) and (β=√2,γ = π/3) [or equivalently (β= -√2,γ 0) ]

prolateoblate



E(β,γ)

E(β,γ=0)
Saddle points support 
a barrier separating 
the various minima

Normal modes:

oblate-prolate



Complete Hamiltonian

Ground g1 band: pure SU(3)-DS states (2N,0)
Ground g2 band: pure SU(3)-DS states (0,2N)
Excited β and γ bands: considerable mixing 

⇒ SU(3)-PDS coexisting with SU(3)-PDS

SU(3) decomposition SU(3) decomposition

oblate prolate



(1,1) ⊕ (2,2) tensor

E2 selection rule: g1 ↔ g2

(0,0) ⊕ (2,2) tensor

E0 selection rule: g1 ↔ g2

ANALYTIC expressions !

P-O coexistence



U(5), SU(3) and SU(3) Dynamical Symmetries

U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Prolate-deformed rotor
U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Oblate-deformed rotor

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) [N] nd τ n∆ L 〉 Spherical vibrator

(2,2N-4)

(0,2N)SU(3) (2N,0)

(2N-4,2)

SU(3)nd = 0

nd = 1

nd = 2

U(5)



U(5), SU(3) and SU(3) Dynamical Symmetries

U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Prolate-deformed rotor
U(6) ⊃ SU(3) ⊃ SO(3) [N] (λ ,µ ) K L〉 Oblate-deformed rotor

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) [N] nd τ n∆ L 〉 Spherical vibrator

Spherical-Prolate-Oblate Shape Coexistence

{Intrinsic part of C.P. Hamiltonian

Energy Surface

• Three degenerate S-P-O global minima: β=0, (β= ±√2,γ = 0)

Complete Hamiltonian

(2,2N-4)

(0,2N)SU(3) (2N,0)

(2N-4,2)

SU(3)nd = 0

nd = 1

nd = 2

U(5)



oblate-spherical-prolate

E(β,γ)

E(β,γ=0)

bandhead
spectrum

Saddle points support 
a barrier separating 
the various minima

Normal modes:

Triple coexistence



Triple Spherical-Prolate-Oblate Coexistence

P-O bands show similar behavior as in P-O coexistence
New aspect: occurrence of spherical type of states
(nd=L=0) and (nd=1,L=2) pure U(5)-DS
Higher spherical states: pronounced (∼70%) nd=2

U(5) decompostion

oblate spherical prolate



Coexisting Partial Dynamical Symmetries

SU(3) decomposition SU(3) decompostion U(5) decompostion

The purity of selected sets of states with respect to 
SU(3), SU(3) and U(5), in the presence of other mixed states,
are the hallmarks of coexisting SU(3)-PDS, SU(3)-PDS and U(5)-PDS

oblate sphericalprolate



S-P-O coexistence

Deformed SU(3) & SU(3) DS states 
(g1 → g1, g2 → g2)  QL & B(E2)  KNOWN! 

Spherical U(5)-DS states (nd=1 → nd=0)

Q(nd=1,L=2) = 0

∆nd = ±1 diagnal in nd

No E0 transitions involving these 
spherical states

The spherical states exhaust the 
(nd=0,1) irreps of U(5)

Spherical → deformed E2 rates very weak

The nd=2 component in the (L=0,2,4) 
states of the g1 and g2 bands is 
extremely small



U(5) and SO(6) Dynamical Symmetries

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) [N] nd τ n∆ L 〉 Spherical vibrator
U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) [N] σ τ n∆ L 〉 γ-unstable rotor

nd = 0

nd = 1

nd = 2

U(5)  σ=N
σ=N-2

SO(6)

common segment 

SO(5) ⊃ SO(3)



U(5) and SO(6) Dynamical Symmetries

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) [N] nd τ n∆ L 〉 Spherical vibrator
U(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3) [N] σ τ n∆ L 〉 γ-unstable rotor

nd = 0

nd = 1

nd = 2

U(5)  σ=N
σ=N-2

SO(6)

Spherical and γ-unstable deformed Shape Coexistence

{
Intrinsic part of C.P. Hamiltonian

Energy Surface

• Two degenerate spherical and γ-unstable deformed global minima: β=0 and β=1

common segment 

SO(5) ⊃ SO(3)



Spherical & γ-unstable deformed

Energy surface independent of γ
SO(5) symmetry

a barrier separates the 
spherical and γ-unstable 
deformed minima

Normal modes:

Complete Hamiltonian

E(β,γ)

E(β,γ=0)

bandhead
spectrum



U(5) decompostion

SO(6) decompostion

- g-band: pure SO(6)-DS (σ=N)
- Excited β bands: mixed

- Spherical states: pure U(5)-DS
with (nd=τ=L=0) & (nd=τ=1,L=2)

- Higher spherical states: 
pronounced & coherent mixing 

⇒ SO(6)-PDS

⇒ U(5)-PDS

Coexisting U(5)-PDS & SO(6)-PDS



Deformed SO(6)-DS states (g → g)

Q(σ=N,τ) = 0

Spherical U(5)-DS states (nd=1 → nd=0)

Q(nd=1,L=2) = 0

Spherical and
γ-unstable deformed
coexistence

∆σ = 0, ∆nd & ∆τ = ±1

g-band exhausts the σ=N irrep of SO(6)
deformed → spherical E2 rates very weak

diagnal in nd

No E0 transitions involving these 
spherical states

= KNOWN !



The Cd problem

110Cd U(5) DS

Most states good spherical vibrator B(E2; 21 → 01) = 27.0 (8) W.u.

B(E2; 03 → 21) <  7.9

B(E2; 25 → 41) <  5
B(E2; 25 → 22) < 0.7+0.5

-0.6

B(E2; 04 → 22)  small BR

BUT:

(nd = 2 → nd = 1)       

(nd = 3 → nd =2 )       

Garret et al. PRC (2012)

46.29 .
19.84
11.02

[W.u.]            EXP U(5)

57.86



• Attempted solution:  normal-intruder mixing 

intruder levelsnormal  levels

B(E2; 03 → 21) <  7.9 W.u.
Requires strong (maximal) mixing to 
reproduce the observed pattern (nd = 2 → nd = 1)       

110Cd



Strong normal-intruder mixing is unsatisfactory

• It results in discrepancy in the decay pattern of nd=3 states 
(enhanced intruder-normal E2 decays in contrast to exp) 

• Unmixed IBM calculations agree with data for (nd=3, L=6,4,3) yrast states, 
but seriously disagree for non-yrast states (nd=2,L=0) and (nd=3,L=0,2) 

• E(intruder) rises away from neutron midshell (114Cd) ⇒ smaller mixing.
In contrast, experimentally (Garrett, Batchelder PRC 2008, 2010, 2012, 2014)
the discrepancy in two- & three-phonon states persists for ACd (A=110-126)      



Strong normal-intruder mixing refuted

• Claims: “Breakdown of vibrational motion in Cd isotopes”  (Garrett PRC 2008)
“Need for a paradigm change”
“Serious questioning on the validity of the multi-phonon interpretation”

• Alternatives: γ-soft rotor (Garrett, PRC 2012), “Tidal wave” (Frauendorf 2011), 
EFT (Papenbrock PRC 2015)

• This talk: an approach to the problem based on partial dynamical symmetry  



τ = 0

τ = 0

τ = 1

21

61 42 31 04 25

41 22 03τ = 2

01

τ = 1

τ = 3
nd = 3

nd = 2

nd = 1

nd = 0

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) [N] nd τ n∆ L 〉

Class A: nd = τ = 0,1,2,3 (n∆ = 0)       01(0), 21(658), 41(1542), 22(1476)
61(2480), 42(2220), 31(2163)

Class B: nd = τ+2 = 2,3 (n∆ = 0)         03(1731), 25(2356)

Class C: nd = τ = 3 (n∆ = 1)                04(2079){

good U(5)

broken U(5)

• Some states with good U(5) symmetry
• Some states break U(5) symmetry ⇒ Partial Dynamical Symmetry



U(5) PDS  

U(6) ⊃ U(5) ⊃ SO(5) ⊃ SO(3) [N] nd τ n∆ L 〉

Class A: |N, nd = τ ,τ, n∆ = 0, L 〉

(Talmi 2004)

Class B:
Class C:

Solvable

{

Mixed

01(0), 21(658), 41(1542), 22(1476)
61(2480), 42(2220), 31(2163)
03(1731), 25(2356)
04(2079)

U(5)-PDS Hamiltonian



IBM with configuration mixing (CM)
(Duval, Barrett, Van Isacker, Garcia Ramos,…) 

Normal and intruder levels



Normal and intruder levels in 110Cd



Normal and intruder levels in 110Cd

03(1731):   (0.9% nd = 2) ,   (94% nd = 3) ,    (5.1% intruder)
04(2079):   (79.8% nd = 2) , (2% nd = 3),       (18% intruder)
25(2356):   (1.2%   nd = 3) , (95.8% nd = 4) , (2.9% intruder) 

Majority of normal states are pure wrt U(5) (> 97%) with weak normal-intruder mixing



Normal and intruder levels in 110Cd

B(E2; 03 → 21)   <  7.9              0.25

[W.u.]                EXP U(5)-PDS-CM

B(E2; 25 → 41)   <  5                 0.19

B(E2; 25 → 22)   < 0.7+0.5
-0.6 0.12



PDS and coexisting normal and intruder states

• Vibrational structure of 110Cd by means of U(5) PDS

• The PDS Hamiltonian retains good U(5) symmetry for yrast states, 
but breaks it in selected non-yrast states

• The mixing with the intruder levels is weak, and affects mainly the 
broken U(5)-DS states

• Most low-lying normal levels maintain the vibrational character.
Only particular states exhibit a departure from this behavior, 
in line with the empirical data

• Calculations are underway (Gavrielov, Garcia-Ramos, Van Isacker, A.L.) 
to see if this approach can be implemented in other neutron-rich Cd isotopes



Concluding Remarks

• A symmetry-based approach to shape coexistence
Ingredients: spectrum generating algebra with several DS chains

geometry: coherent states
intrinsic-collective resolution of the Hamiltonian

• A single number-conserving rotational invariant H which conserves   
the dynamical symmetry for selected bands
Multiple Partial Dynamical Symmetries relevant for shape-coexistence

U(5) and SU(3) PDS                spherical-prolate
SU(3) and SU(3) PDS             prolate-oblate  
U(5), SU(3) and SU(3) PDS    spherical-prolate-oblate
U5) and SO(6) PDS                 spherical - γ-unstable deformed

• Closed expressions for quadrupole moments and B(E2) values;
selection rules for E2 & E0 transitions and isomeric states  

Single DS 
or PDS

Multiple PDS



• Structure away from the critical point, can be studied by
adding the Casimir operator of a particular DS chain

• PDS:  solvable bands are unmixed.
Band mixing can be incorporated by including in H   
kinetic terms which do not affect E(β,γ) but, if strong, 
may destroy the PDS

Concluding Remarks

G1 -PDS
G2 -PDS

G1 -PDS
G2 -PDS
G3 -PDS 

• Study of shape-coexistence and exotic structure in nuclei provides 
a fertile ground for exploring the role of competing and persisting symmetries
and for the development of generalized notions of symmetries

• Coexisting normal and intruder states in nuclei can exibit PDS



Thank you
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