

Short-Range Correlations probed by electrons and protons

A.Corsi, CEA Saclay

ECT* workshop "Probing exotic structure of short-lived nuclei by electron scattering" July 16-20, 2018

Outline

- State of the art on Short-Range Correlations
- Study of Short-Range Correlations in exotic nuclei with proton probes
- Prospectives with electron probes

Thanks to: A.Chance (CEA), O. Hen (MIT), A.Obertelli (TUDa), J.Payet, V.Somà (CEA)

History of Short-Range Correlations (SRC) studies

High-momentum components in (e,e)

Back to back NN emission in (e,e'NN)

E. Piasetzky *et al.,* PRL **97** (2006); R. Subedi *et al.,* Science **320** (2008); O. Hen *et al.,* Science **346** (2014); I.Korover *et al.,* PRL **113** (2014)

Interpreted as due to the short interparticle part of the nuclear wave function (SRC)

History of Short-Range Correlations (SRC) studies

(p,p'NN)

BNL data

(e,e'NN)

JLab data O. Hen *et al.,*, Science **346** (2014); I.Korover *et al.*, PRL **113** (2014)

Consistent results with protons and electrons

SRC studies at JLab

5/22

cea

What is known on Short-Range Correlations

rfu - CEA Saclav sur les lois fondamentales de l'Univers

6/22

- Concern 20% of nucleons
- Out of them, 18% are pn pairs ٠
- The pn-pairs fraction ٠
 - \checkmark does not vary with A (<-> N/Z)
 - \checkmark varies with missing momentum

R. Weiss et al., PLB 780 (2018) 21

On the non observability of SRC

• Momentum distribution, two-body density, NN potentials are non-observable quantities

• Different approaches to calculate many body wave function:

Green Functions	A.Rios et al., PRC 89 (2014)
Monte Carlo	R.Schiavilla et al., PRL 98 (2007); Chen et al., PRL 119, 262502 (2017)
Contact formalism	R. Weiss et al., PRL 114 (2015) 012501; PRC 92 (2015) 054311; PLB 780 (2018) 21; arXiv:1806.10217v1

• Cross sections are observable, but theoretical calculations available only for deuteron S. N. More et al., PRC 92 (2015) 064002 and PRC 96, 054004 (2017)

How to interpret observables

Arrington et al., PRC 86, 065204 (2012)

Chen et al., PRL 119, 262502 (2017)

European Muon Collaboration (EMC) effect

- Reduction of DIS cross section on nucleus with A>2 wrt deuterium
- No agreement on the explanation (nuclear structure effect, modification of bound nucleons,...)

J. Aubert et al., Phys. Lett. B 123, 275 (1983) Arrington et al., PRC 86, 065204 (2012) Weinstein et al., PRL 106, 052301 (2011)

- Striking linear correlation between EMC and SRC
- Modifications of the quark distribution occuring in nucleons affected by SRC?

L.B. Weinstein et al., PRL 106, 052301 (2011)

SRC and EMC effect

- Striking linear correlation between EMC and SRC
- Modifications of the quark distribution occuring in nucleons affected by SRC?
- Isospin dependence of the EMC effect

rfu - CEA Saclay

sur les lois fondamentales

de l'Univers

SRC in exotic nuclei

First study of short- range correlations in exotic nuclei (N/Z >> 1)

Why?

- $a_2(proton) \neq a_2(neutron) =>$ different behavior of protons and neutrons
- implications for nuclear structure&reactions, neutron matter

How? Proton target, inverse kinematics.

- higher detection efficiency, therefore statistics
- detection of A-2 recoil
- direct measurement of CM momentum of the pair
- no « hardware identification » of SRC events

Related programs:

 \checkmark inverse kinematics with protons and ¹²Ca beam at 4 GeV/u/c at Dubna (2018)

O.Hen, T.Aumann, M.Kapishin, E.Piasetzky

□ direct kinematics with proton beam at 3-4.5 GeV at HADES/GSI (> 2018) O.Hen et al.

□ inverse kinematics with protons at R3B/GSI (> 2019) A.Corsi et al.

inverse kinematics at HESR

T.Aumann et al.

with electron beams and exotic nuclei?

SRC in exotic nuclei

First study of short- range correlations in exotic nuclei (N/Z >> 1)

Why?

- $a_2(proton) \neq a_2(neutron) =>$ different behavior of protons and neutrons
- implications for nuclear structure&reactions, neutron matter

How? Proton target, inverse kinematics.

- higher detection efficiency, therefore statistics
- detection of A-2 recoil
- direct measurement of CM momentum of the pair
- no « hardware identification » of SRC events

Related programs:

✓ inverse kinematics with protons and ¹²Ca beam at 4 GeV/u/c at Dubna (2018)

O.Hen, T.Aumann, M.Kapishin, E.Piasetzky

□ direct kinematics with proton beam at 3-4.5 GeV at HADES/GSI (> 2018) O.Hen et al.

□ inverse kinematics with protons at R3B/GSI (> 2019) A.Corsi et al.

inverse kinematics at HESR

T.Aumann et al.

with electron beams and exotic nuclei?

SRC in inverse kinematics at Nuclotron, Dubna

- MIT, Tel-Aviv, GSI, TUDa, Dubna, CEA collaboration
- ¹²C+proton in inverse kinematics
- 1st data taking March 2018, more from 2020
- Data analysis ongoing....
- Proton vs electron as a probe?
- Impact of inverse kinematics on the measurement?
- First direct measurement of A-2

CEA Saclay

sur les lois fondamentales

- CEA, GSI, TUDa (...) collaboration
- 1-1.5 GeV/u beams from GSI accelerator, 15 cm LH₂ target
- Kinematically complete measurement with R³B+LH₂ target
- 1st experiment (to be proposed): ¹⁰⁻¹⁸C (¹²C benchmark)
- Next: light isotopes accessible by ab initio methods (*He)?

Cez

LH₂ target for R3B

- LH₂ target under construction at CEA Saclay
- Different target cells size from 1.5 to 15 cm
- Available from June 2019 for QFS experiments at R³B

A european SCRIT?

Institut de recherche sur les lois fondamentales de l'Univers

2015 context

- Call for idea for the future of GANIL (GANIL 2015)
- Delay of ELISe@FAIR
- Kyoto prototype confirm the feasibility of the SCRIT concept

Working group on **ETIC** (Electron-Trapped Ion Collider) at CEA/IRFU (A.Chance, A.Corsi, A.Obertelli, J.Payet, V.Somà) ETIC goal: gain a **factor > 100 in luminosity** w.r.t. SCRIT (**10**²⁷⁻²⁸ **cm**⁻²**s**⁻¹)

2018 context

- SCRIT@RIKEN successfully commissioned
- Interest from CEA/CNRS on the ETIC project, but no support. Project frozen.

Facility	Luminosity(s ⁻¹ cm ⁻²)	Beam (s ⁻¹)	Target (cm ⁻²)
SCRIT	10 ²⁷⁻²⁸	1018	10 ⁹
ETIC	10 ³⁰	1018	10 ⁹
ELISe	10 ²⁸	GAIN FROM	KINEMATICS (x 10 ⁴)

A european SCRIT?

Institut de recherche sur les lois fondamentales de l'Univers

2015 context

- Call for idea for the future of GANIL (GANIL 2015)
- Delay of ELISe@FAIR
- Kyoto prototype confirm the feasibility of the SCRIT concept

Working group on ETIC (Electron-Trapped Ion Collider) at CEA/IRFU (A.Chance, A.Corsi, A.Obertelli, J.Payet, V.Somà) ETIC goal: gain a factor > 100 in luminosity w.r.t. SCRIT (10²⁷⁻²⁸ cm⁻²s⁻¹)

2018 context

- SCRIT@RIKEN successfully commissioned
- Interest from CEA/CNRS on the ETIC project, but no support. Project frozen.

Facility	Luminosity(s ⁻¹ cm ⁻²)	Beam (s ⁻¹)	Target (cm⁻²)
SCRIT	10 ²⁷⁻²⁸	1018	10 ⁹
ETIC	10 ³⁰	10 ¹⁸	10 ⁹
ELISe	10 ²⁸	GAIN FROM	KINEMATICS (x 10 ⁴)
JLab	10 ³⁶	10 ¹⁵	10 ²¹

And more: DERICA, EIC, ...

Synchrotron

- "Multiple Bend Achromat" solution
- Low emittance + weak constraints on optical functions at IP
- ✔ Relatively well known technology

Energy Recover LINAC (ERL)

- Advantages of conventional LINACs
 + better ratio intensity / operational costs
- Short bunch length (ps) might lead to attractive applications for a wider physics community
- ✔ Relatively recent technology

Both solutions validated for a luminosity of 10³⁰ cm⁻² s⁻¹ for 10⁷ trapped ions

A european SCRIT?

- Challenge: can we trap as many ions as SCRIT in a smaller volume (0.1 mm rms)?
- Simulations with WARP code [Livermore/Berkeley/MSU] designed for charged particle beams with high space-charge intensity

- → ~10⁷ ions trapped
- → Gain of a factor > 100 validated for the test case of ¹³²Sn¹⁺
- → Ongoing simulations for a complete validation of the ETIC trapping system

Possible physics program (a selection)

³⁴Si (proton)

³⁴Si (neutron)

5

³⁶S (proton) ³⁶S (neutron)

Luminosity in SCRIT-like scheme

 $\Delta S = \varepsilon (S_n - S_n) (MeV)$ F. Flavigny et al., Phys. Rev. Lett. 110 (2013)

10

0

0,6 0,4

0,2

-20

-10

2

¹⁴O data

Ī

¹⁴O(d, t)

Ī

20

¹⁶O data O¹⁸O data 3

r [fm]

4

Conclusions

- Short-Range Correlations program carried on mainly (but not only) with electrons
- Exotic nuclei demands the use of proton target in inverse kinematics
- Ongoing programs in the mid term with protons in inverse kinematics
- Long term: electron-exotic ion collisions

