ECT*, 16-20 Jul. in Torento

Present status of the electron scattering experiments at the SCRIT facility

Kyo Tsukada

ELPH, Tohoku University

for the SCRIT collaboration

- ♦ Introduction
- Overview of the facility
- ♦ Results from ¹³²Xe and ²⁰⁸Pb target
- ♦ Upgrade plans

- ♦ Introduction
- ♦ Overview of the facility
- ♦ Results from ¹³²Xe and ²⁰⁸Pb target
- ♦ Upgrades plans
- ♦ Summary

Nuclei studied by electron scattering

- ♦ Electron scattering is so powerful to investigate the nuclear structure information.
- ♦ It has been performed for almost only stable nuclei. (a few exceptions: ³H, ¹⁴C, ...)

Elastic electron scattering for spin-less nuclei

- \Leftrightarrow Luminosity: $\sim 10^{27} [\text{cm}^{-2}\text{s}^{-1}]$
- ♦ Relatively large cross section
- Sensitive to charge density distribution

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot |Fc(q)|^2$$

Cross section of Form factor Mott scattering

$$Fc(q) = \int \rho_C(\vec{r}) e^{i\vec{q}\vec{r}} d\vec{r}$$

Charge density distribution

$$\rho_C = \rho/(1 + e^{(r-R)/a})$$

- ♦ Introduction
- Overview of the facility
- ♦ Results from ¹³²Xe and ²⁰⁸Pb target
- ♦ Upgrades plans
- ♦ Summary

SCRIT electron scattering facility

SCRIT system

1 cycle ~ 1 Hz (typical)

ERIS (Electron-beam-driven RI separator for SCRIT)

- ◆ Production: photo-fission of ²³⁸U
- ♦ Target : house-made Uranium car
- ♦ Driver: electron from RTM
- ♦ FEBIAD or Surface ionization

ERIS (Electron-beam-driven RI separator for SCRIT)

For the experiment with ¹³²Xe and ²⁰⁸Pb,

- ♦ ¹³²Xe: Natural xenon gas was introduced from a gas bottle.
- ♦ ²⁰⁸Pb: Vapor of the lead from a crucible was used.
- Mass resolution is good enough.

Heated up to ~600°C

WiSES (Window-frame Spectrometer for Electron Scattering)

- ♦ Introduction
- ♦ Overview of the facility
- ♦ Results from ¹³²Xe and ²⁰⁸Pb target
- ♦ Upgrades plans
- ♦ Summary

Data analysis

- Momentum distribution
 - ♦ Clear elastic peak from

132Xe targets (wIon) and residual gas (woIon)

- Vertex point distribution
 - ♦ Events come from SCRIT trapping region

Performances of WiSES

- ♦ Geant4 simulation including
 - ♦ All materials
 - ♦ Detector resolutions & efficiencies
 - ♦ Radiative tail

J. Friedrich, Nucl.Instr.Meth.129 (1975) 505

Background contribution

Time structure

w/Ion wo/Ion w/Ion

- ♦ Beam current : $\sim 200 \text{ mA} \rightarrow 10^{18} [e^{-/s}]$
- \diamond Residual gases in the SCRIT : $\sim 5 \times 10^{-8}$ Pa
 - \rightarrow 6x10⁸ [particles/cm²]
 - \rightarrow L ~ 0.6x10²⁷ [/cm²/s]

for neutral gas

- Residual gases are ionized and trapped by the beam.
 - ♦ Amount is similar to the neutral ones.

- \Leftrightarrow Luminosity of residual gas : > 1 × 10²⁷ [/cm²/s].
 - ♦ It is not small, and should be subtracted.

Momentum transfer distribution of ²⁰⁸Pb

The cross sections are calculated by a Phase shift calculation code (DREPHA).

Private communication with J. Friedrich

♦ The charge density distribution is expressed by the Sum Of Gaussian.

♦ The luminosity is considered as free parameter.

#injected ions $\sim 2 \times 10^8$ [/pulse]

B. Frois *et. al.*, Phys.Rev.Lett.38,152 (1977)

Momentum transfer distribution of ¹³²Xe

- ♦ The cross sections are calculated by a Phase shift calculation code (DREPHA).
 - Private communication with J. Friedrich
- ♦ The charge density distribution is expressed by the 2-parameter Fermi.
- ♦ The luminosity and C, t are considered as free parameters.

#injected ions $\sim 2x10^8$ [/pulse]

Contribution of inelastic scattering for ¹³²Xe

- ♦ Transition density of the first 2⁺ state is calculated by a relativistic mean field theory.

 Private communication with K. Hagino and H. Mei
- ♦ Cross section of the inela. scatt. is calculated by a DWBA code (FOUBES).

Private communication with H. Blok and L. Lapikas

♦ The contribution is **negligible** in our kinematical region.

Luminosity Monitor

Cross Section of electron scattering

$$\frac{d\sigma}{d\Omega} = \frac{1}{L} \frac{dN}{d\Omega}$$

measured by WiSES

measured by LMon

- ♦ Introduction
- Overview of the facility
- ♦ Results for ¹³²Xe and ²⁰⁸Pb target
- ♦ Upgrades plans
- ♦ Summary

Background suppression

- Followings are planed this summer:
 - ♦ Vacuum pump (NEG) will be reinforced
 - ♦ Cold trap (liq.N₂) will be installed to remove H₂O component
 - ♦ New SCRIT device
 - ♦Fewer material
 - &E-field Modulation by RF to remove residual gas ions

H²⁺ 36.1%

■ "イオン電流"

■"イオン電流(BG引き後)"

CO₂+ 1%

3.00E-11

2.50E-11

Luminosity Upgrade

* RI generation & transportation systems are continuously developed and improved.

Higher power driver (>1kW) for ISOL (future)

RTM (Racetrack Microtron) Electron energy: 150 MeV **ISOL** Ion transportation system **SCRIT FRAC** Target system Cooler Buncher system SR2 (Max. 700 MeV) Electron energy: 150-300 MeV Storage current: 100-300 mA Beam life time: >1 hours WiSES Scattered electron spectrometer Acceptance: $\sim 80 \text{ msr}$, ($\theta : 30-55 \text{ deg}$) $dp/p : \sim 10^{-3} (Ee = 300 MeV)$

Summary

- ♦ SCRIT electron scattering facility was constructed.
 - Successful commissioning experiments with stable nuclei were performed
 - Development & improvement for unstable nuclei are ongoing.
 - ♦ The first experiment with unstable nucleus, ¹³⁷Cs, will be carried out soon.

♦ The advices and/or hints for physics to be studied by electron scattering are very welcome.