Current Status of the SCRIT Electron Scattering Facility

M. Wakasugi and SCRIT collaborations

ECT* Work Shop Proving Exotic Structure of Short-lived Nuclei by Electron Scattering (16-20 July. 2018) **Contents** :

- 1. Overview of the facility and the SCRIT system
- 2. Achieved luminosity and achievable luminosity in SCRIT system
- 3. Properties of target ions trapped in SCRIT
- 4. Preparation of target RI ions
- 5. Summary

The SCRIT Facility in the RIKEN RI Beam Factory

The SCRIT Electron Scattering Facility

The SCRIT Electron Scattering Facility

Electron Storage Ring (SR2)

SCRIT (Self-Confining RI Ion Target)

SCRIT is internal-target-forming technique in an electron storage ring.

Target ions are confined in the beam orbit by periodic focusing force.

The SCRIT device

Time sequence of the SCRIT system operation

Total duty factor ~0.25

Luminosity and its limit in the SCRIT system

Achievable luminosity N_0 $N_c (=\varepsilon_{trap} \varepsilon_{ov} N_0)$ $I_e (A)$ $\sigma (cm^2)$ $L \sim \frac{I_e/e N_c}{\sigma} / (cm^2s)$

Current performance (typical)

 $I_e \sim 220 \text{ mA (} 1.3 \text{x} 10^{18} \text{ /s)}$ $\sigma \sim 3.5 \text{ mm}^2$ $\Box \sim 10^{27} \text{ /(cm}^2 \text{s)}$ $N_C \sim 2.6 \text{x} 10^7$

(Target thickness (N_C/σ) ~ 7.4x10⁸/cm²)

e-beam loss due to collision with target ions

Luminosity limit estimated from the e-beam loss and target ion loss

Assuming minma:

e-beam accumulation lifetime limit = 10 min.

ion trapping lifetime limit = 200 ms

Upper limit of luminosity:

Achieved luminosity as a function of current


```
Injection N_0 = 3x10^8.
```

Trapping time 240ms.

- lon trapping is started from 50mA
- Luminosity is increase with current
- Maximum Luminosity ~2x10²⁷ /(cm2s)
- Instability was happen in large current region.
- Luminosity at 200MeV is lager than that at 150MeV, because of smaller beam size.

Short summary of luminosity at SCRIT

(with perfectly stable e-beam)

Properties of the target-ion trapping

Trapping efficiency ε_{trap} and overlap efficiency ε_{ov}

Current dependence of trapping lifetime

Temporal evolution of charge states of target ions

• Maximum charge state is ~20+, and higher charge states (>20+) do not exist in the SCRIT.

→ Dropout of higher charge state ions

- Rapid increase of a total charge (target ions + residual gas ions)
 - → Space charge effect (Neutralization limit : $\sim 10^9$ charges)

Electron beam instability

higher multi-modes

Beam motion in longitudinal phase space

Influences of e-beam oscillation and space charge on trapping lifetime

Image of ion trapping with/without e-beam instability

Image of ion trapping with/without e-beam instability

Preparation of target RI ions

ERIS (Electron-beam-driven RI separator for SCRIT) 150MeV e-beam - Caf lon **FEBIAD or SI ion source ERIS** RTM , IBUTE DE LE LE source anode cathode ionization ionizenoobe chamber extractor >2000°C neekutah Performances aboomss (vappor)) mass resolution $M/\Delta M$ 1660 overall efficiency **21 % (record values for Xe in FEBIAD)** griffid e beam ~100eV >99 % (Cs in SI) 2000 °C **Electron beam**

Unstable nuclei produced by photo-fission of ²³⁸U

DC-to-Pulse conversion for injecting ions into SCRIT

Recent improvement in overall efficiency for target ion injection

Overall efficiency for target ion injection

Summary

- 1. The SCRIT facility has been constructed and an electron scattering has become one of ISOL experiments
- 2. Upper limit of achievable luminosity in our SCRIT system is $\sim 10^{29}$ /(cm²s), and new technique is required for further luminosity.
- 3. Electron-beam-instability suppression is the most important issue to get higher and temporally stable luminosity.
- 4. Improvement of the target-ions transmission from ERIS to SCRIT has been completed, and we will be ready for the first experiment for unstable nuclei.

Thank you for your attention