

The n2EDM experiment

Patrick Mullan on behalf of the nEDM collaboration at Paul Scherrer Institut ECT* Workshop | EDMs, Trento

ETH

LPSC

UNI

FR

University of Sussex

PAUL SCHERRER INSTITUT

UK

OC

NNES GUTENBERG

Who are we?

Second generation neutron EDM experiment with experience of previously successful measurement PSI: $d_n < 1.8 \times 10^{-26} e\ cm\ (90\%\ C.L.\)$ Standard Model expectation: $10^{-32} e\ cm$

Phase 1 n2EDM target sensitivity $d_n \approx 10^{-27} e \ cm$

- *Improved neutron statistics:* larger neutron storage volume, improved source, etc.
 - Improved systematics: Better magnetometry and
 magnetic field control

[PSI nEDM limit] doi:10.1103/PhysRevLett.124.081803 (2020) ²

This is the n2EDM apparatus

Compare precession frequencies of $\uparrow\uparrow$ and $\uparrow\downarrow$: $d_n = \frac{\pi\hbar}{2\left|\vec{E}\right|} (f_{n\uparrow\downarrow} - f_{n\uparrow\uparrow})$

• Measure simultaneously in different volumes

• Measure in the same volume, but at a different time

Problem: magnetic field varies in time and space

$$f_{n\uparrow\downarrow} \coloneqq f_{n\uparrow\downarrow} \left(\left| \overrightarrow{B_0} \right| \right) \text{ and } f_{n\uparrow\uparrow} \coloneqq f_{n\uparrow\uparrow} \left(\left| \overrightarrow{B_0} \right| \right)$$

Compare precession frequencies of $\uparrow\uparrow$ and $\uparrow\downarrow$: $d_n = \frac{\pi\hbar}{2\left|\vec{E}\right|} (f_{n\uparrow\downarrow} - f_{n\uparrow\uparrow})$

• Measure simultaneously in different volumes

• Measure in the same volume, but at a different time

Problem: magnetic field varies in time and space

$$f_{n\uparrow\downarrow} \coloneqq f_{n\uparrow\downarrow} \left(\left| \overrightarrow{B_0} \right| \right) \text{ and } f_{n\uparrow\uparrow} \coloneqq f_{n\uparrow\uparrow} \left(\left| \overrightarrow{B_0} \right| \right)$$

Compare precession frequencies of $\uparrow\uparrow$ and $\uparrow\downarrow$: $d_n = \frac{\pi\hbar}{2\left|\vec{E}\right|}(f_{n\uparrow\downarrow} - f_{n\uparrow\uparrow})$

• Measure simultaneously in different volumes

• Measure in the same volume, but at a different time

Problem: magnetic field varies in time and space

$$f_{n\uparrow\downarrow} \coloneqq f_{n\uparrow\downarrow} \left(\left| \overrightarrow{B_0} \right| \right) \text{ and } f_{n\uparrow\uparrow} \coloneqq f_{n\uparrow\uparrow} \left(\left| \overrightarrow{B_0} \right| \right)$$

Compare precession frequencies of $\uparrow\uparrow$ and $\uparrow\downarrow$: $d_n = \frac{\pi\hbar}{2\left|\vec{E}\right|}(f_{n\uparrow\downarrow} - f_{n\uparrow\uparrow})$

• Measure simultaneously in different volumes

• Measure in the same volume, but at a different time

Problem: magnetic field varies in time and space

$$f_{n\uparrow\downarrow} \coloneqq f_{n\uparrow\downarrow} \left(\left| \overrightarrow{B_0} \right| \right) \text{ and } f_{n\uparrow\uparrow} \coloneqq f_{n\uparrow\uparrow} \left(\left| \overrightarrow{B_0} \right| \right)$$

Solution:

- Create a stable and ideal homogeneous field
- Measure the magnetic field very precisely

Let's focus on the neutron storage chambers

How is the magnetic field inside the precession chambers measured?

Mercury, Hg, comagnetometer

- Polarised mercury vapour leaked into the precession chamber
- Apply a $\pi/2$ pulse
- Probe free precession

$$\mathcal{R} = \frac{f_n}{f_{Hg}} = \left| \frac{4\pi\mu_n}{\hbar\gamma_{Hg}} \right| \mp \frac{d_n}{\pi\hbar f_{Hg}} | E$$

How is the magnetic field inside the precession chambers measured?

Mercury, Hg, comagnetometer

- Polarised mercury vapour leaked into the precession chamber
- Apply a $\pi/2$ pulse
- Probe free precession

$$\mathcal{R} = \frac{f_n}{f_{Hg}} = \left| \frac{4\pi\mu_n}{\hbar\gamma_{Hg}} \right| \mp \frac{d_n}{\pi\hbar f_{Hg}} | E$$

How is the magnetic field inside the precession chambers measured?

[n2EDM design] doi:10.1140/epjc/s10052-021-09298-z (2021) 15

Mercury comagnetometers only measure average $\overrightarrow{B_0}$ is this enough?

$$d_{n \leftarrow Hg}^{\text{false}}\left(\overrightarrow{B_0}\right) + d_n^{\text{false}}\left(\overrightarrow{B_0}, E_n\right)$$

Phantom modes:

$$\langle G_{TB} \rangle_{\text{Hg}} = \left\langle \frac{\left| B_{\text{Hg}}^{\text{TOP}} - B_{\text{Hg}}^{\text{BOT}} \right|}{\text{Height of double chambers}} \right\rangle$$
$$G_{TB} = G_{1,0} - L_3^2 G_{3,0} + L_5^2 G_{5,0} - \cdots$$

Mercury comagnetometers only measure average $|\vec{B_0}|$ is this enough?

$$d_{n \leftarrow Hg}^{\text{false}}\left(\overrightarrow{B_0}\right) + d_n^{\text{false}}\left(\overrightarrow{B_0}, E_n\right)$$

Phantom modes:

n2EDM slow magnetic environment

Goal (Top-bottom resonance match condition):

 $-0.6 \text{ pT/cm} < \frac{dB}{dz} < +0.6 \text{ pT/cm}$

An internal field difference of less than 10 pT over 180 seconds (storage cycle)

Reality:

the Magnetic environment fluctuation \sim 10 μT

Requirement:

A shielding factor of at least 1 million

Let's focus on passive magnetic shielding

How to work within a magnetically noisy environment?

Magnetically shielded room (MSR):

- Six layers of mu-metal
- One Aluminium eddy-current shield + RF shield
- Interior volume of $(2.92 m)^3$

Let's focus on active magnetic shielding

How to work with low frequency magnetic noise?

Active magnetic shield (AMS):

- Over 300 rectangular tiles
- 55 km of wire
- Homogenous coils range: +/- 50 μ T
- Gradient Coils range: +/- 5 μT/m

How to work with low frequency magnetic noise?

8 Fluxgate (3 axis magnetic sensors) placed near corners of MSR

Control hardware introduced and commissioned

Current Source with 3 channels for each coil

Feedback algorithm implemented (Proportional feedback)

How to work within a magnetically noisy environment?

8 Fluxgate (3 axis magnetic sensors) placed near corners of MSR

Control hardware introduced and commissioned

Current Source with 3 channels for each coil

Feedback algorithm implemented (Proportional feedback)

Initial B-field min-max: $\sim 100 \ \mu T$

Suppressed B-field min-max: $\sim 10 \ \mu T$

What is seen inside in the neutron storage volume?

External field source: SULTAN magnet

The AMS performance depends upon the magnitude of the field source, i.e. difficult to quantify its performance.

Again, let's focus on passive magnetic shielding

How to minimise the magnetic fields inside the magnetically shielded room?

Degaussing:

 Coils integrated onto layers of the magnetically shielded room

[MSR] doi:10.1063/5.0101391 (2022) [Degaussing] *doi:*10.1140/epjc/s10052-023-12351-8 (2024)

How to minimise the magnetic fields inside the magnetically shielded room?

Degaussing:

- Coils integrated onto layers of the magnetically shielded room
- 1. Gradually Induce alternating currents into each layer until **saturation of the magnetization**
- 2. Ramp down alternating current to zero to minimize residual magnetization

How to minimise the magnetic fields inside the magnetically shielded room?

Degaussing:

- Coils integrated onto layers of the magnetically shielded room
- 1. Gradually Induce alternating currents into each layer until **saturation of the magnetization**
- 2. Ramp down alternating current to zero to minimize residual magnetization

Induced heat into each layer, needs time to cool before measurements

Optimization

- Further reduce the residual magnetization
- Reduce duration of degaussing + thermal relaxation from 12 hours to 1.5 hours

After degaussing what residual magnetic fields are observed?

Let's focus on the vertical magnetic field

What magnetic field do the neutrons precess within?

- Cubic cage of overlaying coils including a Vertical solenoid
- Positioned independently of vacuum chamber
- $B_z = 1\mu T$ vertical holding field, B_0
- Target performance:
 - Within 100pT of ideal field within volume surrounding storage chambers
 - Tens of fT stability over a few minutes

What magnetic field do the neutrons precess within?

$$B_z = 1\mu T$$
 vertical holding field, B_0

Target performance:

• 100pT of ideal field within volume surrounding storage chambers

We can tune the B_0 field

$$B_z = 1\mu T$$
 vertical holding field, B_0

Target performance:

 100pT of ideal field within volume surrounding storage chambers

In addition: 56 trim coils

What magnetic field do the neutrons precess within?

$B_z = 1\mu T$ vertical holding field, B_0

Target performance:

100pT of ideal field within volume surrounding storage chambers

In addition: 56 trim coils

What magnetic field do the neutrons precess within?

$B_z = 1\mu T$ vertical holding field, B_0

Target performance:

100pT of ideal field within volume surrounding storage chambers

In addition: 56 trim coils

How accurately can we shape the interior magnetic field?

PSI Ultra cold neutron (UCN) source

How are polarised neutrons obtained and guided?

How to detect UCN polarisation spin state?

Ensemble of neutrons from each (Top/Bottom) chamber is released into separate polarisation spin state analyser

- Gravitational potential, $U_g = 1 \text{neV/cm}$
- Vertical arrangement allows for U_g at foils to be fine tuned
- Polarised neutron detection range: 90 neV to 330 neV

UCN counter: Gaseous detection of Helium-3 and Carbon-tetrafluoride mixture

Conversion to proton: $n + {}^{3}He \rightarrow p + {}^{3}H$ Proton to scintillation: $p + {}^{3}H \rightarrow p + {}^{3}H + \gamma$ and $p + CF_{4} \rightarrow p + CF_{4} + \gamma$

Photo multiplier tubes detect scintillation

UCN Spin state

How to detect UCN polarisation spin state?

Ensemble of neutrons from each (Top/Bottom) chamber is released into separate polarisation spin state analyser

- Gravitational potential, $U_g = 1 \text{neV/cm}$
- Vertical arrangement allows for U_g at foils to be fine tuned
- Polarised neutron detection range: 90 neV to 330 neV

UCN counter: Gaseous detection of Helium-3 and Carbon-tetrafluoride mixture

Conversion to proton: $n + {}^{3}He \rightarrow p + {}^{3}H$ **Proton to scintillation:** $p + {}^{3}H \rightarrow p + {}^{3}H + \gamma$ and $p + CF_4 \rightarrow p + CF_4 + \gamma$ Photo multiplier tubes detect scintillation

Asymmetry, $A_{\uparrow\downarrow} = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$ (convolution of *initial neutron polarisation*, neutron energies, detector efficiencies,

polarisation loss mechanisms, ...)

ETH zürich

ETHzürich **In2EDM**

Dedicated setup to screen for magnetic contamination

Gradiometer at PSI:

- Fast scanning
- *pT* sensitivity for average measurements

We need to check every single piece of the assembly that enters the vacuum vessel, i.e. thousands of screws

Assembly of neutron double storage chambers

Sequence of measurements

Can we store neutrons in the chambers?

Now for some results, Ramsey Curves

Ramsey method measurement $\pi/2$ pulse, $t_{\pi/2} = 1.95$ s *Precession duration*, T = 180 s

Now for some results, Ramsey Curves

1.00 -

Ster

Ramsey method measurement $\pi/2$ pulse, $t_{\pi/2} =$ Precession durati

No comagne

Visibility, α (Spin analysi efficien

Is that an EDM?

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta v}\right)$$

Run 3366, T = 180s, $t_{\pi/2} = 1.95s$

Now for some results, Ramsey Curves

Ramsey method measurement $\pi/2$ pulse, $t_{\pi/2} = 1.95$ s *Precession duration*, T = 180 s

No comagnetometer!

Visibility, $\alpha \approx 80\%$ (Spin analysing detector efficiency ~90%)

Is that an EDM?

No, the High Voltage hardware is yet to be installed and commissioned. This shift is too large. i.e. nEDM limit is at 70 nHz

$$A(f_{\pi/2}) = -\alpha \cos\left(\pi \frac{f_{\pi/2} - f_n - \delta}{\Delta \nu}\right)$$
$$\Delta \nu = \left(2T + 8 t_{\pi/2}/\pi\right)^{-1}$$

Plans for this year

- 1) Commissioning of Hg polarization cells
- 2) Installation and commissioning of high voltage
- 3) PSI neutron delivery starts in June, preliminary EDM measurements
- 4) At the end of this year, installation and testing of new electrodes and

insulator rings

pmullan@phys.ethz.ch

