

Toward an improved measurement of the muon EDM

Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, **Research and Innovation SERI**

FONDS NATIONAL SUISSE Schweizerischer Nationalfonds FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION This work is financed by the SNSF under grant № 204118.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 884104 (PSI-FELLOW-III-3i)

Swiss Confederation

THE BASICS

Diego Alejandro Sanz-Becerra 7.3.2024

Larmor precession

$$\hat{H} = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

$$\vec{\mu} = g \frac{q}{2 m_{\mu}} \vec{s} \quad \vec{d} = \eta \frac{q}{2 m_{\mu} c} \vec{s}$$

$$\vec{\omega}_{c} = -\frac{q}{m} \left(\frac{\vec{B}}{\gamma a} - \frac{\gamma}{a (\gamma^{2} - 1)} \frac{\vec{\beta} \cdot \vec{E}}{c} \right)$$
B

Cyclotron frequency

- This precession is only due to the magnetic dipole moment
- What if it has an EDM?

The Frozen-Spin Technique

$$\vec{\omega}_{FS} = \frac{q \eta}{2 m} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right)$$

Muon's rest frame: Lorentz boosted B field

$$\vec{\mathsf{E}}'_{\mathsf{B}} = \gamma \ \mathsf{c} \ \vec{\beta} \times \vec{\mathsf{B}}$$

$$\vec{B} \perp \vec{\beta} \perp \vec{E}$$
 $E \simeq a B c \beta \gamma^2$

For the experiment:

- B = 3 T
- p: O(100 MeV/c)
- E: O(1 MV/m)
- E_B': O(1 GV/m)

THE EXPERIMENT

Diego Alejandro Sanz-Becerra 7.3.2024

The Experiment - The Muons

PAUL SCHERRER INSTITUT The Experiment Superconducting Solenoid Entrance Trigger

Diego Alejandro Sanz-Becerra 7.3.2024 Page10

 Using G4beamline and surrogate models, we optimized the storage efficiency of muons up to ~0.4 %.

The Experiment - Parts

Injection Channels - High Fields

- Shield muons during the transport to the magnet's bore (B ≥ 0.8 T) with SC materials.
- SC channels inside cryostat.
- Simulating different concepts and SC materials.
- Expected prototype tests this year.

PAUL SCHERRER INSTITUT

Injection Channels - Low Fields

- Use magnetic steel to prolong the SC tubes outside cryostat to the beamline window.
- Shield the injected muons to below ~100 mT.

- Thin entrance detector in anti-coincidence with veto-detectors
- Meshed array of scintillator strips determine the trajectory of the storable-muons

• The trigger signal has to reach the Magnetic kicker within O(100 ns)

 Custom electronics with 3 ns discriminator and 2 ns pre-amplifiers and splitter.

Magnetic Kicker R&D

- Magnetic kick generated by Anti-Helmholtz coils.
- Segmented into quadrants to reduce inductance:
 - Lower driving voltage.
 - Faster pulse.

Diego Alejandro Sanz-Becerra 7.3.2024 Page20

THE MEASUREMENTS

Diego Alejandro Sanz-Becerra 7.3.2024

- α: Analysis parameter
- Asymmetry precession due to EDM is too slow.
- The change of asymmetry with respect to time is relevant.
- The sensitivity is optimized by maximizing $\alpha \sqrt{N}$: (Figure-of-merit)

Increase the electric field until the g-2 oscillations "freeze"

set $E \cong aBc\beta\gamma^2$

Diego Alejandro Sanz-Becerra 7.3.2024 Page24

The Measurements - Measuring The EDM

- High sensitivity working point: Positive helicity.
 - The configuration for phase 1.

The Measurements - Sensitivity

We studied three methods with different complexity:

- 1. Simple: Use all measured events. $d_{\mu} = \frac{\pi}{2 c \beta \alpha P} \dot{A}$
- 2. T-Method: Count events only over a threshold that maximizes the FoM. $d_{\mu} = \frac{\hbar}{2 c \beta \tilde{\alpha} P} \dot{A}_{Th}$

The Measurements - Sensitivity

3. W-Method: Weight the measured events for each voxel in energy and direction.

The Measurements - Sensitivity

Method	Phase I	Phase II
	FoM	FoM
Simple	0.17	0.17
T-method	0.22	0.18
W-method (20x20x20bins)	0.29	0.28

- The T-method is considered good enough for phase 1, but not for phase 2.
- The W-method is considered for phase 2.
 - Strong requirements for the detectors (momentum resolution, and good tracking)

PAUL SCHERRER INSTITUT

LATEST PROGRESS

Diego Alejandro Sanz-Becerra 7.3.2024

Latest Progress - Test Beam 2023

- Test Beam-Monitor detector.
- Test Entrance detectors.
- Test the injection of 28 MeV/c muons at low B fields.
- Test control of the momentum under external changes.
 - Systematic effect

Latest Progress - Beam-Monitor

- Objective:
 - Align the beam with the injection channel.
 - Monitor the stability of the beam (e.g. during change of B-field direction).
- Tests:
 - Performance of different detector geometries.
 - Stability under external changes (e.g. position)
 - Sensitivity to beam displacement.

Horizontal displacement

Latest Progress - Entrance Detector

- Benchmarked different scintillators for future use as trigger for the magnetic kick.
- Obtained timing resolution on individual muons of ~300 ps.

Detectors Tests - Injection And Systematic Study

• False EDM-like precession ($\Omega \propto \beta xE$) due to non-zero longitudinal electric field (E₁):

$$\Omega_{\rho}^{E_{z}} = -\frac{e}{mc} \left(a - \frac{1}{\gamma^{2} - 1} \right) \beta_{\theta} E_{z},$$

- One of the criteria to cancel the false signal:
 - Momentum distribution for clockwise
 (CW)and anticlockwise (CCW) injection
 should be "equal".
 - CW and CCW injections achieved by inverting the B field.

(De fin

Detectors Tests - Injection And Systematic Study

- Agreement of the ToF spectra for positive/negative B field configurations within 0.2%.
- Momentum control better than 0.5%: Necessary condition to avoid false signal from $E_{j}\neq 0$

STATUS AND OUTLOOK

Diego Alejandro Sanz-Becerra 7.3.2024

- Study possible effects of magnetic kick on the positron detection.
- Characterize muons trajectory.
- Test cryogenics and SC tubes.
- Precise mapping of the magnet's B field.
- Stop muons in orbit with magnetic kicker.

Backup

Diego Alejandro Sanz-Becerra 7.3.2024 Page36

MDM And EDM

PAUL SCHERRER INSTITUT

- Binning in energy and direction.
- The W-method is preferred, which imposes strong requirements for tracking and momentum discrimination of the detectors.

Polm

Diego Alejandro Sanz-Becerra 7.3.2024 Page42

PAUL SCHERRER INSTITUT

Field Intensity - Estimated Shielding Factor

Shielding [1] vs. Distance [meter]

- Operate magnet at a field high enough without saturating the injection tubes
- Shield the injected muons to below ~100 mT

- Highly restrictive parameter space for successful injection of muons.
- Need for efficient methods to sample the parameter space and generate estimations.

- 6th degree polynomial-chaos-expansion surrogate model performs well for predicting the efficiency.
- Using optimization based in Genetic-Algorithm, found experiment parameters for storing 0.4 % of the injected muons (0.47% with G4beamline)

Diego Alejandro Sanz-Becerra 7.3.2024 Page47

 $e\rho \, \mathrm{d}B$ 2 dz dz

$$\dot{\vec{p}}(t) = \frac{e}{\gamma m} \vec{p} \times \vec{B}_{\text{pulse}}(t)$$
$$\implies \dot{p}_{z}(t) = \frac{e}{\gamma m} p_{\phi} \vec{B}_{\text{pulse}}(t) \cdot \hat{\rho}$$

PAUL SCHERRER INSTITUT

Magnetic Kicker R&D

- 200 A 35 ns FWHM pulse.
- Prototype under development for testing in summer.

300

400

500

p) dn

Status And Outlook

- Study possible effects of magnetic kick on the positron detection.
- Stop 200 MeV/c pions inside 3 T field.
 - Uniform distribution of positrons from muons at rest.
 - Hexagonal-tiling scintillating detectors before and after the stopping target.

