Measurement of the ¹²⁹Xe Electric Dipole Moment

Fabian Allmendinger

Phys. Rev. A 100 (2019). DOI: 10.1103/PhysRevA.100.022505

Physikalisches Institut, Universität Heidelberg:

F. Allmendinger, U. Schmidt, B. Brauneis, J. Tremmel Institut für Physik, Universität Mainz W. Heil, B. Niederländer, S. Karpuk, M. Repetto, S. Zimmer

Forschungszentrum Jülich

I. Engin, H.-J. Krause, A. Offenhäuser

Principle of Measurement

Method: free spin precession frequency measurements of gaseous, nuclear polarized ¹²⁹Xe

Principle of Measurement

Use co-magnetometry, ¹²⁹Xe and ³He, to become independent of drifts of the magnetic guiding field B_0

EDM Sensitivity

EDM resolution

$$\sigma_d \sim \frac{1}{E_z} \cdot \frac{1}{SNR} \cdot \frac{1}{T^{3/2}}$$

- E_z : electric field
- SNR : signal to noise ratio
- T : measurement time of coherent spin precession
- Spin coherence time is (partially) determined by magnetic field gradients

$$\frac{1}{T_2^*} = \frac{1}{T_1} + \frac{4R^4\gamma^2}{175D} \left(\left| \vec{\nabla}B_{1,y} \right|^2 + \left| \vec{\nabla}B_{1,z} \right|^2 + 2 \left| \vec{\nabla}B_{1,x} \right|^2 \right)$$

Procedure of an EDM run

Fit to segments (4 s) to extract amplitudes, frequencies and phases

1. Step: Phases

1. Step: Phases

1. Step: Phases

2. Step: Weighted phase difference

- Linear term
 - Chemical Shift
 - Earth rotation
- Four exponential terms
 - Ramsey-Bloch-Siegert shift

3. Step: Fit to weighted phase difference to extract EDM

$$\Delta \phi(t) = a + b \cdot t + E_{He} \cdot \exp\left[-\frac{t}{T_2^{He}}\right] + E_{Xe} \cdot \exp\left[-\frac{t}{T_2^{Xe}}\right] + F_{He} \cdot \exp\left[-\frac{2t}{T_2^{He}}\right] + F_{Xe} \cdot \exp\left[-\frac{2t}{T_2^{Xe}}\right] + g \cdot h(t) 4000$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

New Setup @ PI Heidelberg

New Setup @ PI Heidelberg

Magnetically Shielded Room (MSR):

- Build by Vacuumschmelze
- Outer dimensions: 3m x 3m x 3m
- 3 Mu-metal layers à 3mm
- 1 Eddy-current layer (HF shield)

Degaussing Procedure

MSR performance

- Residual field < 1 nT
- Residual field homogeneity in central volume: gradients < 10pT/cm
- Shielding factor:

Degaussing Procedure and Performance Enhancement by Low-Frequency Shaking of a 3-Layer Magnetically Shielded Room F. Allmendinger, B. Brauneis, W. Heil, U. Schmidt, Rev. Sci. Instrum. 94, 115105 (2023), DOI: 10.1063/5.0167663

Improvements (established methods)

Measure	Factor	$\sigma_{d} \sim \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
Increase the electric field strength (now: E=800 V/cm)	4	$E_z SNR T^{3/2}$
Increase Xe and He pressure	2	
Improve spin coherence time due to active gradient minimization	2	Image: 10 ⁴ Image: 10 ⁴ Image: 10 ⁴
Reduced noise level inside new MSR	10	10 100 100 100 100 100 100 100 100 100
Combined:	160	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Expected EDM resolution: 1	·10 ⁻²⁹ ec	m

(statistical uncertainty)

Additional coils for gradient compensation @ FZ Jülich

Results of automatic gradient compensation @ FZ Jülich

Example: Spherical cell (diameter 10 cm) filled with 30 mbar of polarized ³He

 T_2^* measurement time: 10 minutes Total measurement time: 4 hours

Iteration	C _x / mA	C _y / mA	C _z / mA	C _c / mA	Spin coherence time T ₂ * / s	effective Gradients
start	0	0	0	0	7499	50 pT/cm
0	0	0.15	0	0	9758	
1	0.11	0.11	-0.30	0.11	14750	
3	0.30	0.30	-0.34	0.01	26590	
5	0.33	0.30	-0.60	0.02	35120	
13	0.30	0.40	-0.67	0.18	37686	< 10 pT/cm

Additional coils for gradient compensation @ PI Heidelberg

Five gradient coils with current sources:

- Resolution: 16 bit
- Range: -5 ... +5 mA

All five degrees of freedom of the linear gradient matrix

Summary

- Measurement of the CP-violating Electric Dipole Moment of ¹²⁹Xe using comagnetometry (with ³He)
- Setup @ FZ Jülich
 - Result: $d=(-4.7 \pm 6.4) \cdot 10^{-28}$ ecm improves best ¹²⁹Xe EDM limit
 - Measurement of the permanent electric dipole moment of the 129Xe atom, F. Allmendinger, I. Engin, W. Heil, S. Karpuk, H.-J. Krause, B. Niederländer, A. Offenhäusser, M. Repetto, U. Schmidt, and S. Zimmer, Phys. Rev. A 100 (2019). DOI: 10.1103/PhysRevA.100.022505
- Setup @ Heidelberg
 - New MSR with improved performance
 - Degaussing Procedure and Performance Enhancement by Low-Frequency Shaking of a 3-Layer Magnetically Shielded Room
 F. Allmendinger, B. Brauneis, W. Heil, U. Schmidt, Rev. Sci. Instrum. 94, 115105 (2023), DOI: 10.1063/5.0167663
 - Two orders of magnitude can be gained by established methods

Physikalisches Institut, Universität Heidelberg:

F. Allmendinger, U. Schmidt, B. Brauneis, J. Tremmel Institut für Physik, Universität Mainz W. Heil, B. Niederländer, S. Karpuk, M. Repetto, S. Zimmer

Forschungszentrum Jülich

I. Engin, H.-J. Krause, A. Offenhäuser