

EDMs: complementary experiments and theory connections Trento, March 4-8, 2024

Neutron EDM

Experimental overview

Kseniia Svirina

Post-doc Institut Laue-Langevin & Universität Heidelberg <u>svirinak@ill.fr</u>

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

The nEDM collaboration @PSI

10⁻¹⁹ –

10⁻²⁰

Neutron EDM measured by the nEDM collaboration (2020):

$$d_{\rm n} = (0.0 \pm 1.1_{\rm stat} \pm 0.2_{\rm sys}) \times 10^{-26} \, e \, {\rm cm}$$

C. Abel et al., Phys. Rev. Lett. 124 (2020), 081803

Smith,

urcell Ramsey

2EDM

The nEDM apparatus and the IN2P3 team (FR) at PSI in 2019

The nEDM collaboration @PSI

The PanEDM collaboration @ILL, Grenoble

1.8 m

 \leftarrow The next goal:

n2EDM

PanEDM

LANL

TUCAN

. 🗖 . 🗖 .

10⁻¹⁹

10⁻²⁰

10⁻²¹ 10⁻²²

 $\begin{matrix} \textbf{B} & 10^{-23} \\ \textbf{0} & 10^{-24} \\ \textbf{H} & 10^{-25} \\ \textbf{M} & 10^{-26} \\ \textbf{H} & 10^{-26} \\ \end{matrix}$

10⁻²⁷

10⁻²⁸

10⁻²⁹

neutron EDM

electron EDM

year

Smith,

Purcell, Ramsey

Many people contributed, Over 40 student theses!

PanEDM experiment at SuperSun UCN source at ILL

Vac. pumps SP UCN optics MSR

The Los Alamos National Laboratory nEDM Experiment

@LANL UCN facility, USA

UCNA/UCNB/UCNA+ experiment

TRIUMF Ultra-Cold Advanced Neutron (TUCAN) Collaboration, @TRIUMF, Canada

View of future facility at TRIUMF

How to measure nEDM?

Dipole moments as <u>couplings</u> of the spin to the Magnetic field (MDM) and Electric field (EDM)

$$\widehat{H} = -\mu \, \vec{\sigma} \cdot \vec{B}$$

Precession of the spin around \vec{B}

How to measure nEDM?

Dipole moments as <u>couplings</u> of the spin to the Magnetic field (MDM) and Electric field (EDM)

$$\widehat{H} = -\mu \, \vec{\sigma} \cdot \vec{B} - d \, \vec{\sigma} \cdot \vec{E}$$

Precession of the spin around \vec{B} and \vec{E}

How to measure nEDM?

Obtain neutrons with spin either UP or DOWN, **Count the number** of each, which depends on f_n

Ramsey's method of separated oscillating fields

Asymmetry: $A = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$

Example, nEDM experimental data (2017): each point is a measurement cycle with a precession time of T = 180s performed with the nEDM apparatus (single-chamber), the magnetic field: B0 = 1036.3 nT which corresponds to a Larmor precession frequency of 30.2235 Hz.

The maximal sensitivity is obtained for cycles measured at A = 0 where the slope of the resonance curve is highest.

Historical overview: the main milestones

Neutrons with energy < 200 neV, are totally reflected by material walls.

They can be stored in material bottles for long times, up to 15 minutes.

They are significantly affected by gravity.

Historical overview: the main milestones

- a UV probe beam transverses the chambers
- $\rightarrow\,$ record the absorbtion of the light (an oscillating signal), extract $\rm f_{Hg}$

Towards greater sensitivity

Requirements for the magnetic field for n2EDM as an example

Related to statistical errors		
(B-gen) Top-Bottom resonance matching condition	$-0.6\mathrm{pT/cm} < G_{1,0} < 0.6\mathrm{pT/cm}$	
(B-gen) Field uniformity in the chambers	$\sigma(B_z) < 170 \mathrm{pT}$	
(B-gen) Field stability on minutes timescale	< 30 fT	
(B-meas) Precision Hg co-magnetometer, per cycle, per chamber	< 30 fT	
Related to systematical errors		
(B-gen) Gradient stability on the timescale of minutes	$\sigma(G)[5\min] < 50 \text{ fT/cm}$	
(B-meas) Accuracy mercury co-magnetometer per chamber	< 100 fT	
3-meas) Accuracy on cubic mode (Cs magnetometers)	$\delta G_3 < 20\mathrm{fT/cm}$	
(B-gen) Reproducibility of the order 5 mode	$\sigma(G_5) < 20 \mathrm{fT/cm}$	
(B-meas) Accuracy of the order 5 mode (field mapper)	$\delta G_5 < 20 \mathrm{fT/cm}$	
(B-gen) Dipoles close to the electrode	< 20 pT at 5 cm	
(E-gen) Relative accuracy on E field magnitude	$< 10^{-3}$	

Table 4: Summary of the requirements for the magnetic-field measurement (B-meas), magnetic-field generation (B-gen) and electric-field generation (E-gen) for the n2EDM design.

Experimental challenges (stat and syst)

Example illustration (for kids):

Detected a magnetic piece! (July 2021)

A very clear evidence of a presence of a magnetic element inside the flange located on the bottom surface of the vacuum vessel. The middle and the lowest z-position ring scans.

Experimental challenges (stat and syst)

Coil system installation at n2EDM: moving by mm's – tuning pT's !

The first vertical map after the installation of the B_0 coil showed a deviation in the 1st-order gradient $G_{1,0}$.

 $G_{1,0} = -19.9 \text{ pT/cm}$ – compatible with a vertical shift of the entire coil system with respect to the MSR by $\Delta z = 3 \text{ mm}$

Requirementon field production (B_0 coil): $-0.6 \text{ pT/cm} < G_{1,0} < 0,6 \text{ pT/cm}$ "Top-Bottom resonance matching condition"(maximum permitted vertical gradient of the magnetic field)

Evaluation of the vertical shift value in order to get the $G_{1,0}$ gradient within the desired range

The values of $G_{1,0}$ shown for each polarity of the B₀ coil are the averages of the values of $G_{1,0}$ after degaussing in L6 and L6-crossed configurations.

Towards greater sensitivity

Towards greater sensitivity

n2EDM@PSI, Switzerland

View of future facility at TRIUMF

TUCAN @TRIUMF, Canada

PanEDM@ILL, France

~10⁻²⁸ecm

nEDM@SNS, USA

(Spallation Neutron Source at Oak Ridge National Laboratory)

Concept: R. Golub & S. K. Lamoreaux, Phys. Rep. 237, 1 (1994)

PanEDM@ILL status and outlook

Central part of the PanEDM experiment

- ✓ Double chamber Ramsey interferometer at room temperature
- ✓ Simultaneous measurement for the "↑↑" and "↑↓" configurations
- ✓ Magnetic shielding: 6×10⁶ @1mHz
- ✓ ¹⁹⁹Hg and Cs magnetometers
- ✓ UCNs: 80neV allowing for high statistics

PanEDM@ILL status and outlook

Ongoing installation of parts, commissioning with UCN in progress since 2023

- Characterization of the UCN spectrum: ongoing.
- Neutron guiding system produced and being tested.
- Three-way switch upgrade in progress.
- Magnetic field mapping will be resumed during the reactor shutdown.
- Infrastructure (IT, electrics...) revision.
- New effort on simulations of the UCN transport (Geant4).

Coil system

Three-way switch

Guide Manifold tests at SUN2@ILI

SP UCN optics Vac. pumps

"Almost there ... "

~

Thank you!

Photos from Trento, Villa Tambosi, March 2024

Uniformity of the vertical B-field **n2EDM**

SuperSUN: High density UCN source

Phase I characterization Measurement agrees with expectation (48 MW) cf. EPJ Conf. 219, 02006 (2019)

Total UCN output: 3.8×10^6 (integral of blue peak) Source density: 270 UCN/cm³ Long storage times: 126000 UCN remaining after 20min Expected density in PanEDM: 3.9 UCN/cm³ (58 MW) Source characterization, PanEDM commissioning ongoing

Phase II expectation

Peak field:2.1 TSource density:1670 UCN/cm³ (x5 gain)Density in PanEDM:40 UCN/cm³ (x10 gain)

Ecliptique - Laurent Thion.

Comparison to the prototype source SUN2

SuperSUN: High density UCN source

Phase I characterization Measurement agrees with expectation (48 MW) cf. EPJ Conf. 219, 02006 (2019)

Total UCN output: 3.8×10⁶ (integral of blue peak)

EPJ Web of Conferences 219, 02006 (2019) PPNS 2018

The PanEDM neutron electric dipole moment experiment at the ILL

David Wurm¹, Douglas H. Beck², Tim Chupp³, Skyler Degenkolb^{4, a}, Katharina Fierlinger¹, Peter Fierlinger¹, Hanno Filter¹, Sergey Ivanov⁵, Christopher Klau¹, Michael Kreuz⁴, Eddy Lelièvre-Berna⁴, Tobias Lins¹, Joachim Meichelböck¹, Thomas Neulinger², Robert Paddock⁶, Florian Röhrer¹, Martin Rosner¹, Anatolii P. Serebrov⁵, Jaideep Taggart Singh⁷, Rainer Stoepler¹, Stefan Stuiber¹, Michael Sturm¹, Bernd Taubenheim¹, Xavier Tonon⁴, Mark Tucker⁸, Maurits van der Grinten⁸, and Oliver Zimmer⁴

Ongoing work: spectrum, transfer efficiency and storage in external volumes, etc...

Photo credit:

Ecliptique - Laurent Thion.

by material walls only, and a similar spectrum is expected. The converter volume is 12 liters (three times larger than in SUN2); scaling for this and the brighter cold beam implies a production rate on the order of 10^5 s^{-1} . At saturation, a total of 4×10^6 stored UCN is predicted (330 cm⁻³).

60000

3.8×10⁶ UCN measured (fill-and-empty)

Comparison to the prototype source SUN2

The PanEDM Experiment

Statistical sensitivity:	Frequency measurement:
$\sigma(d_n) \gtrsim \frac{\hbar}{2\alpha \mathbf{E} T \sqrt{N}}$	$ \delta\omega = rac{ dE }{\hbar F}$

SuperSUN	Phase I	
Saturated source		
density [cm ⁻³]	330	
Diluted density [cm ⁻³]	63	
Density in cells [cm ⁻³]	3.9	
PanEDM Sensitivity [1	σ , e cm]	
Per run	5.5×10^{-25}	$\leftarrow \Delta E \Delta t \geq \hbar/2$
Per day	3.8×10^{-26}	
Per 100 days	3.8×10^{-27}	