A Global EDM Analysis with Theory Uncertainties

Nina Elmer

March 2024

arXiv: 2403.02052

with S. Degenkolb, M. Mühlleitner, T. Modak, T.Plehn

- Easy to add new measurements from different experiments
- Adaptable parameters and predictions
- Comprehensive uncertainty treatment
- Correlated systematic uncertainties between measurements
- Markov chain to construct exclusive likelihood
- Use profiling and marginalization for likelihoods
- See Tilman's talk yesterday

- EDMs measured **below electroweak scale**
- Degrees of freedom: leptons, non-relativistic nucleons N and pions $\vec{\pi}$
- Possible Lagrangians: weak-scale and hadronic-scale
- Matching electron interactions between scales

•
$$\mathscr{L}_{CPV} = \mathscr{L}_{CKM} + \mathscr{L}_{\bar{\theta}} + \mathscr{L}_{dipole} + \mathscr{L}_{Weinberg} + \mathscr{L}_{SMEFT}$$

• $\mathscr{L}_{CKM}, \mathscr{L}_{\bar{\theta}}$: **CP-violation** in CKM-matrix and gluon-field strength

•
$$\mathscr{L}_{had} \supset \mathscr{L}_{N,Sr} + \mathscr{L}_{\pi N} + \mathscr{L}_{eN} - \frac{i}{2} F^{\mu\nu} d_e \,\bar{e} \sigma_{\mu\nu} \gamma_5 e$$

- **short-range nucleon** EDM parameter $d_p^{sr} \approx -d_n^{sr}$
- effective **pion-nucleon interaction** $g_{\pi}^{(0)}, g_{\pi}^{(1)}$
- e N interactions by isospin and tensor structure

- Matching to weak-scale further reduces number of parameters
- $C_{S,P,T}^{(0,1)}$ expressed by three SMEFT Wilson coefficients
- Reduced to $C^{(0)}_{S,P,T}$ using hadronic matrix elements
- Preserve full $C_{S,P,T}^{(0,1)}$ dependence
- **7D** parameter space: $d_e, C_S^{(0)}, C_P^{(0)}, C_T^{(0)}, g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_n^{sr}$

Paramagnetic molecules [2212.11841, Nature 562 7727, Nature 473 493]

• ThO, HfF⁺, YbF (constraints d_e , $C_S^{(0)}$)

Paramagnetic atoms [PhysRevLett.88.071805, PhysRevLett.63.965]

• ²⁰⁵Tl, ¹³³Cs

Diamagnetic atoms [1601.04339, 1902.02864, 2207.08140, 1606.04931, PhysRevA.44.2783]

• ¹⁹⁹Hg, ¹²⁹Xe, ¹⁷¹Yb, ²²⁵Ra, TIF (constraints $C_P^{(0)}, C_T^{(0)}, g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_n^{sr}$)

Nucleons [2001.11966]

• neutron (constraints $g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_n^{sr}$)

EDMs from Lagrangian

• Relation of data and parameters:
$$d_i = \sum \alpha_{i,c_j} c_j$$

- Linearization different from other global analyses
- Experimental uncertainties **uncorrelated Gaussians**

System i	$lpha_{i,d_e}$	$\alpha_{i,C_{\mathcal{S}}^{(0)}}[e \text{ cm}]$	$\alpha_{i,C_p^{(0)}}[e \text{ cm}]$	$\alpha_{i,C_T^{(0)}}[e \text{ cm}]$	$\alpha_{i,g_{\pi}^{(0)}}[e \text{ cm}]$	$\alpha_{i,g_{\pi}^{(1)}}[e \text{ cm}]$	$lpha_{i,d_n^{ m sr}}$	$lpha_{i,d_p^{ m sr}}$
n	_	_	-	_	$1.38^{\pm 0.02} \cdot 10^{-14}$	$2.73^{\pm 0.02} \cdot 10^{-16}$	1	-1
²⁰⁵ Tl ¹³³ Cs	$-558^{\pm 28} [74] \\ 123^{\pm 4}$	$-6.77^{\pm 0.34} \cdot 10^{-18} \\ 7.80^{+0.2}_{-0.8} \cdot 10^{-19}$	$\begin{array}{c} 1.5^{+2}_{-0.7}\cdot 10^{-19} \\ -1.4^{+0.8}_{-2}\cdot 10^{-20} \end{array}$	$\begin{array}{c} 8.8^{\pm0.9}\cdot10^{-21} \\ 1.7^{\pm0.2}\cdot10^{-20} \end{array}$	n/a _	n/a _	n/a _	n/a —
¹⁹⁹ Hg ¹²⁹ Xe ¹⁷¹ Yb ²²⁵ Ra TlF	$\begin{array}{c} -0.012^{+0.0094}_{-0.002} \ [75,76] \\ -8^{+0}_{-8} \cdot 10^{-4} \ [76,77] \\ (-0.012^{+0.01145}_{-0.002}) \ [78] \\ -0.054^{\pm 0.002} \ [76] \\ 81^{\pm 20} \ [50,70] \end{array}$	$\begin{array}{r} -1.26^{+0.7}_{-1.2}\cdot 10^{-21}\\ -2.1^{+1.2}_{-2.5}\cdot 10^{-22}\\ -9.1^{+5}_{-11}\cdot 10^{-22}\\ 8.6^{+9.5}_{-4.5}\cdot 10^{-21}\\ 5.6^{+4.9}_{-2.5}\cdot 10^{-18}\end{array}$	$\begin{array}{c} 6.6^{+1.2}_{-0.3} \cdot 10^{-23} \\ 1.7^{+0.5}_{-0.4} \cdot 10^{-23} \\ 4.5^{+1.8}_{-1.1} \cdot 10^{-23} \\ -7.0^{+1.7}_{-2.6} \cdot 10^{-22} \\ 2.4^{+1.0}_{-1.9} \cdot 10^{-19} \end{array}$	$\begin{array}{c} -6.4^{+3}_{-4}\cdot 10^{-21} \\ 1.24^{+0.78}_{-0.61}\cdot 10^{-21} \\ -4.4^{+2.2}_{-2.9}\cdot 10^{-21} \\ -4.5^{+2.0}_{-2.5}\cdot 10^{-20} \\ 4.8^{+1.2}_{-1.1}\cdot 10^{-16} \end{array}$	$\begin{array}{c} -1.18\substack{+0.19\\-2.62}\cdot10^{-17}\\ -0.4\substack{+1.2\\-23}\cdot10^{-19}\\ -9.5\substack{\pm2.4\\1.7\substack{+5.2\\-0.8}\cdot10^{-18}\\ 1.7\substack{+5.2\\-0.8}\cdot10^{-15}\\ 1.9\substack{+0.1\\-1.4}\cdot10^{-14} \end{array}$	$\begin{array}{c} 1.6^{+0}_{-6.5} \cdot 10^{-17} \\ -2.2^{+1.1}_{-17} \cdot 10^{-19} \\ 1.3^{\pm 0.33} \cdot 10^{-17} \\ -6.9^{+3.1}_{-21} \cdot 10^{-15} \\ -1.6^{\pm 0.4} \cdot 10^{-13} \end{array}$	$\begin{array}{c} -1.56^{\pm0.39}\cdot10^{-4}\\ 1.7^{+0.7}_{-0}\cdot10^{-5}\\ -1.13^{\pm0.28}\cdot10^{-4}\\ -5.36^{\pm1.34}\cdot10^{-4}\\ -9.47^{\pm2.37}\cdot10^{-2}\end{array}$	$\begin{array}{c} -1.56^{\pm0.39}\cdot10^{-5}\\ 3.51^{\pm0.88}\cdot10^{-6}\\ -1.13^{\pm0.28}\cdot10^{-5}\\ -1.11^{\pm0.28}\cdot10^{-4}\\ -4.59^{\pm1.15}\cdot10^{-1}\end{array}$
HfF ⁺ ThO YbF	1 1 1	$\begin{array}{c}9.17^{\pm0.06}\cdot10^{-21}\\1.51^{+0}_{-0.2}\cdot10^{-20}\\8.99^{\pm0.70}\cdot10^{-21}\end{array}$	_ _ _	_ _ _	_ _ _		_ _ _	
	$\eta_{i,d_e}^{(m)} \left[rac{\mathrm{mrad}}{\mathrm{s} \ e \ \mathrm{cm}} ight]$	$k_{i,C_S}^{(m)}\left[rac{\mathrm{mrad}}{\mathrm{s}} ight]$	α_{i,C_P}	$lpha_{i,C_T}$	$lpha_{i,g_\pi^{(0)}}$	$lpha_{i,g_\pi^{(1)}}$	$lpha_{i,d_n^{ m sr}}$	$lpha_{i,d_p^{ m sr}}$
HfF ⁺ ThO YbF	$ \begin{array}{c c} 3.49^{\pm 0.14} \cdot 10^{28} \left[75,79 - 82 \right] \\ -1.21^{+0.05}_{-0.39} \cdot 10^{29} \left[75,83 - 85 \right]^{\dagger} \\ -1.96^{\pm 0.15} \cdot 10^{28} \left[75,86 - 89 \right] \end{array} $	$ \begin{array}{r} \hline 3.2^{+0.1}_{-0.2} \cdot 10^8 \ [75,79,80] \\ -1.82^{+0.42}_{-0.27} \cdot 10^9 \ [75,83,85{-}87]^\dagger \\ -1.76^{\pm 0.2} \cdot 10^8 \ [75,86{-}88] \end{array} $			-		-	-

System i	$d_e [e \text{ cm}]$	C_S	C_P	C_T
Tl Cs	$ \begin{vmatrix} (7.2 \pm 7.7) \cdot 10^{-28} \\ (-1.4 \pm 5.6) \cdot 10^{-26} \end{vmatrix} $	$(5.9 \pm 6.4) \cdot 10^{-8}$ $(-2.3 \pm 8.9) \cdot 10^{-6}$	$(-2.7 \pm 3.0) \cdot 10^{-6}$ $(1.3 \pm 5) \cdot 10^{-4}$	$(-4.5 \pm 4.9) \cdot 10^{-5}$ $(-1.1 \pm 4.2) \cdot 10^{-4}$
¹⁹⁹ Hg ¹²⁹ Xe ¹⁷¹ Yb ²²⁵ Ra TlF	$ \begin{array}{ } (-1.8 \pm 2.6) \cdot 10^{-28} \\ (2.2 \pm 2.3) \cdot 10^{-25} \\ (5.7 \pm 4.4) \cdot 10^{-25} \\ (-7.4 \pm 1.1) \cdot 10^{-23} \\ (-2.1 \pm 3.6) \cdot 10^{-25} \end{array} $	$(-1.7 \pm 2.5) \cdot 10^{-9}$ $(8.3 \pm 8.7) \cdot 10^{-7}$ $(7.5 \pm 5.7) \cdot 10^{-6}$ $(4.7 \pm 7) \cdot 10^{-4}$ $(-3.0 \pm 5.1) \cdot 10^{-6}$	$(3.4 \pm 4.8) \cdot 10^{-8}$ $(-1.0 \pm 1.1) \cdot 10^{-5}$ $(-1.5 \pm 1.2) \cdot 10^{-4}$ $(-5.7 \pm 8.5) \cdot 10^{-3}$ $(-7.1 \pm 12) \cdot 10^{-5}$	$(-3.4 \pm 4.9) \cdot 10^{-10}$ $(-1.4 \pm 1.5) \cdot 10^{-7}$ $(1.6 \pm 1.2) \cdot 10^{-6}$ $(-8.9 \pm 13) \cdot 10^{-5}$ $(-3.6 \pm 6.1) \cdot 10^{-8}$
HfF ⁺ ThO YbF	$ \begin{array}{ } (-1.3 \pm 2.1) \cdot 10^{-30} \\ (4.3 \pm 4.1) \cdot 10^{-30} \\ (-2.4 \pm 5.9) \cdot 10^{-28} \end{array} $	$(-1.4 \pm 2.3) \cdot 10^{-10}$ $(2.9 \pm 2.7) \cdot 10^{-10}$ $(-2.7 \pm 6.6) \cdot 10^{-8}$		
	$g_{\pi}^{(0)}$	$g^{(1)}_{\pi}$	d_n^{sr}	$d_p^{ m sr}$
n	$(0\pm 8.1)\cdot 10^{-13}$	$(0 \pm 4.1) \cdot 10^{-11}$	$(0 \pm 1.1) \cdot 10^{-26}$	$(0 \pm 1.1) \cdot 10^{-26}$
¹⁹⁹ Hg ¹²⁹ Xe ¹⁷¹ Yb ²²⁵ Ra TlF	$ \begin{vmatrix} (-1.9 \pm 2.7) \cdot 10^{-13} \\ (4.4 \pm 4.6) \cdot 10^{-9} \\ (7.2 \pm 5.5) \cdot 10^{-10} \\ (2.4 \pm 3.5) \cdot 10^{-9} \\ (-9.0 \pm 15) \cdot 10^{-10} \end{vmatrix} $	$(1.4 \pm 2.0) \cdot 10^{-13}$ $(8 \pm 8.3) \cdot 10^{-10}$ $(-5.2 \pm 4.0) \cdot 10^{-10}$ $(-5.8 \pm 8.7) \cdot 10^{-10}$ $(1.1 \pm 1.8) \cdot 10^{-10}$	$(-1.4 \pm 2.0) \cdot 10^{-26}$ $(-1.0 \pm 1.1) \cdot 10^{-23}$ $(6.0 \pm 4.6) \cdot 10^{-23}$ $(-7.5 \pm 11) \cdot 10^{-21}$ $(1.8 \pm 3.1) \cdot 10^{-22}$	$(-1.4 \pm 2.0) \cdot 10^{-25}$ $(-5.0 \pm 5.2) \cdot 10^{-23}$ $(6.0 \pm 4.6) \cdot 10^{-22}$ $(-3.6 \pm 5.4) \cdot 10^{-20}$ $(3.7 \pm 6.3) \cdot 10^{-23}$

- Strongest measurements: HfF⁺, ThO, n, Hg
- **4D sub-space** to understand correlations
- Well-constrained (hopefully) parameters: $d_e, C_S^{(0)}, g_{\pi}^{(0)}, d_n^{sr}$
- $d_e C_S^{(0)}$ constrained by ThO and HfF⁺
- $g_{\pi}^{(0)} d_n^{sr}$ constrained by Hg and n

Well-constrained 4D-space

Hadronic parameters

- Expand hadronic analysis to $g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_{n}^{sr}$
- Hg, neutron measurements: strongest constraints
- single-parameter χ^2 values
- Difference of $\mathcal{O}(10^4)$ between measurements

Correlations in hadronic sector

- Rich correlations for $g_{\pi}^{(0)}, g_{\pi}^{(1)}$
- Aligned **correlations** for $g_{\pi}^{(0)}, d_{n}^{sr}$
- Combination Xe with Ra, Yb, TIF: constraining just d_n^{sr}

- Interested in 2D correlations and 1D profile likelihoods
- Typical measurements in 5D space: TI, Cs, TIF, Xe, Ra, Yb
- Strongest measurements in 5D space: **narrow correlations**
- Not enough strong measurements means profile likelihood dominated by typical measurements
- n and Hg without impact and numerically hard \rightarrow remove from dataset

- 2D-subspace $d_e C_s^{(0)}$ from ThO and HfF⁺ factorized
- 5D parameter-set: $C_P^{(0)}, C_T^{(0)}, g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_n^{sr}$
- Ignoring 10^{-3} -correlations from Hg and n
- 2D-parameter correlations first

Global analysis

- Reminder: $d_i = \sum \alpha_{i,c_j} c_j$
- Theory uncertainties on each α_{i,c_i}
- Uncorrelated between measurements and parameters
- Profiling flat likelihood from nuisance parameters
 (1) error bars added linearly
 (2) dependencies consistent with α = 0 removed
- Applied to every measurement and model parameter

Theory uncertainties in 4D space

Theory uncertainties in hadronic sector

- No impact of Xe on $g_{\pi}^{(0)}$ (range of theory uncertainties)
- **Different** correlation patterns for $g_{\pi}^{(0)} g_{\pi}^{(1)}$
- Correlation patterns **aligned** for $g_{\pi}^{(0)} d_{n}^{sr}$

- Same considerations as before
 - Not including Hg and n
 - Factorizing out $d_e C_S^{(0)}$ plane
- Weaker constraints on hadronic model parameter
 - exception d_n^{sr} : only hardly correlated, small theory uncertainties

Theory uncertainties in correlations

Conclusion and Outlook

- 11 measurement for 7 parameters $d_e, C_S^{(0)}, C_P^{(0)}, C_T^{(0)}, g_{\pi}^{(0)}, g_{\pi}^{(1)}, d_n^{sr}$
- Four strongest measurements constraining $d_e, C_S^{(0)}, g_\pi^{(0)}, d_n^{sr}$
- Strong limits on $d_e C_S^{(0)}$ factorizing
- Hadronic sector highly correlated
- Theory uncertainties
 (1) semileptonic: mild impact
 (2) hadronic: weaker constraints
- Comments over email or coffee?

Backup slides

System i	Measured d_i [e cm]	Upper limit on $ d_i [e \text{ cm}]$
n	$(0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}}) \cdot 10^{-26}$	$2.2 \cdot 10^{-26}$
²⁰⁵ Tl	$(-4.0 \pm 4.3) \cdot 10^{-25}$	$1.1 \cdot 10^{-24}$
¹³³ Cs	$(-1.8 \pm 6.7_{\text{stat}} \pm 1.8_{\text{syst}}) \cdot 10^{-24}$	$1.4 \cdot 10^{-23}$
HfF ⁺	$(-1.3 \pm 2.0_{\text{stat}} \pm 0.6_{\text{syst}}) \cdot 10^{-30}$	$4.8 \cdot 10^{-30}$
ThO	$(4.3 \pm 3.1_{\text{stat}} \pm 2.6_{\text{syst}}) \cdot 10^{-30}$	$1.1 \cdot 10^{-29}$
YbF	$(-2.4 \pm 5.7_{\text{stat}} \pm 1.5_{\text{syst}}) \cdot 10^{-28}$	$1.2 \cdot 10^{-27}$
¹⁹⁹ Hg	$(2.20 \pm 2.75_{\text{stat}} \pm 1.48_{\text{syst}}) \cdot 10^{-30}$	$7.4 \cdot 10^{-30}$
¹²⁹ Xe	$(-1.76 \pm 1.82) \cdot 10^{-28}$	$4.8 \cdot 10^{-28}$
¹⁷¹ Yb	$(-6.8 \pm 5.1_{\text{stat}} \pm 1.2_{\text{syst}}) \cdot 10^{-27}$	$1.5\cdot10^{-26}$
²²⁵ Ra	$(4 \pm 6_{\text{stat}} \pm 0.2_{\text{syst}}) \cdot 10^{-24}$	$1.4 \cdot 10^{-23}$
TlF	$(-1.7 \pm 2.9) \cdot 10^{-23}$	$6.5 \cdot 10^{-23}$

2212.11841, Nature 562 7727, Nature 473 493, PhysRevLett.88.071805, PhysRevLett.63.965, 1601.04339, 1902.02864, 2207.08140, 1606.04931, PhysRevA.44.2783, 2001.11966

SMEFT Wilson coefficients

$$\begin{split} C_{S}^{(0)} &= -g_{S}^{(0)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell edq} - C_{\ell equ}^{(1)} \right) \qquad C_{S}^{(1)} = -g_{S}^{(1)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell edq} + C_{\ell equ}^{(1)} \right) \\ C_{T}^{(0)} &= -g_{T}^{(0)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell equ}^{(3)} \right) \qquad C_{T}^{(1)} = -g_{T}^{(1)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell equ}^{(3)} \right) \\ C_{P}^{(0)} &= -g_{P}^{(0)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell edq} + C_{\ell equ}^{(1)} \right) \qquad C_{P}^{(1)} = -g_{P}^{(1)} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im} \left(C_{\ell edq} - C_{\ell equ}^{(1)} \right) \end{split}$$

Which parameter from which system?

parameter	experimental system
d_e	paramagnetic molecules
C_S	paramagnetic molecules
C_T	diamagnetic systems (Hg, Xe)
C_P	diamagnetic systems (Hg, Xe)
$g^{(0)}_{\pi}$	neutron, Hg
$g^{(1)}_{\pi}$	Hg, neutron, other diamagnetic systems
-1 <i>ST</i>	