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Nuclear landscape and (main) methods in nuclear structure
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Effective interactions for mean-field and beyond-mean-field calculations
What we do

Motivation (in a nutshell ): effective interactions

▸ What they are
Effective interactions and/or functionals model the strong interaction in
the nuclear medium, i.e. with coupling constants which absorb effects
which are not resolved and correlations not taken into account in the wave
function

Eeff = ⟨Φ ∣(T̂ + V̂eff)∣Φ⟩ .

▸ What they are supposed to be used for
▸ Mean-field:

∣Φ⟩ ∈ SℓA ⊂ HA ∶ δEeff[ρ] = 0 ⇒ mean-field equations

with SℓA = (generalized-)Slater determinants for A nucleons. The energy
Eeff[ρ] is a functional of the one-body density ρ (called the EDF).

▸ Beyond-mean-field: many flavors
(Q)RPA, (p)GCM, MPMH, etc.

with ∣Φ⟩ ∉ SℓA (and possibly ∣Φ⟩ ∉ HA!)
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How it is done

Infinite nuclear matter properties (“known unknowns”)
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▸ Saturation density:
ρsat ∼ 0.16 fm−3;

▸ Binding energy per nucleon:

lim
A→+∞

E(N, Z)
A

= av ∼ −16 MeV;

▸ Effective mass: m∗/m ∼ 0.7 to 1;
▸ Compression modulus: K∞ ∼ 210 MeV.
▸ Symmetry energy J and its slope L: J ≃ 30 − 32 MeV, L ≃ 40 − 50 MeV.



Effective interactions for mean-field and beyond-mean-field calculations
How it is done

Standard effective interactions (two-body part)1

V̂eff = V̂Coulomb + {
V̂Skyrme ,

V̂Gogny ,
(or others) with

▸ Coulomb (for t1 = t2 ≡ p)

V̂Coulomb =
e2

∥r2 − r1∥
δ(r1 − r3)δ(r2 − r4)1σ

1
τ .

1Notations: kij = kj − ki , 1σ ≡ δs1s3 δs2s4 , P̂σ ≡ δs1s4 δs2s3 and the same for isospin.
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⎧⎪⎪⎨⎪⎪⎩
[t0 (1σ + x0 P̂σ)

+ 1
2 t1 (1σ + x1 P̂σ) (k∗2

12 + k2
34) + t2 (1σ + x2 P̂σ)k∗12 ⋅ k34

+i Wso (σ̂s1s3 δs2s4 + σ̂s2s4 δs1s3) ⋅ (k
∗
12 × k34)]

1τ δ(r1 − r2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

range

δ(r1 − r3)δ(r2 − r4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

locality

⎫⎪⎪⎬⎪⎪⎭
.
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▸ Gogny (Brink & Boeker for the two-body part)
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Effective interactions for mean-field and beyond-mean-field calculations
How it is done

Can we do mean-field calculations with a two-body interaction only?

▸ Infinite nuclear matter properties can be used as a filters:

E
A

, ρsat , K∞ ,
m∗

m
, J , L , etc.

▸ V.S. Weisskopf, Nucl. Phys. 3, 423 (1957): zero-range interaction at NLO

m∗

m
≃ 0.4 ≠ anything reasonable. /

▸ Feature confirmed for zero- and finite-range interactions at any order...
D. Davesne, J. Navarro, J. Meyer, K.B. and A. Pastore, Phys. Rev. C97, 044304 (2018).

⇒ Something “beyond” two-body is mandatory.
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How it is done

What about a (simple) three-body term?
▸ Zero-range three-body term (LO): easy to implement and not too

time-consuming
u0 δ(r1 − r2)δ(r2 − r3)1σ

1
τ .

Improves the effective mass ,, but K∞ is too high / and polarized
matter collapses // (therefore unusable for time-odd nuclei) .

A possible solution is to use a two-body density dependent interaction
instead of the three-body

1
6 t3 ρ0(r1) δ(r1 − r2)1σ

1
τ .

Equivalent to a three-body interaction in symmetric matter.

Changed to 1
6 t3 (1σ + x3P̂σ)ρ0(r1) δ(r1 − r2)1τ for a better flexibility in

spin/isospin channels,
and then to 1

6 t3 (1σ + x3P̂σ)ρα
0 (r1) δ(r1 − r2)1τ to improve K∞ .

This is not an interaction, it does not respect the Pauli principle, but this may
be acceptable in an effective approach.
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Effective interactions for mean-field and beyond-mean-field calculations
How it is done

Last (but not least) mistreatment of the EDF

Once you have chosen your favorite flavor of interaction, mean-fields equations
are obtained from

δEeff = 0 with Eeff = ⟨Φ ∣(T̂ + V̂eff)∣Φ⟩ = T + EH + EF + EP

but, often, EH , EF and EP are not strictly derived from the same interaction
V̂eff or some parts are note derived from an interaction at all:
▸ some terms can be dropped (e.g. “J2” terms);
▸ other can be modified (e.g. Coulomb exchange);
▸ EP can be derived from a simpler interaction;
▸ ...

And this works pretty well for mean-field calculations,
see e.g. W. Ryssen et al., EPJA 59, 96 (2023).

... This is, more or less, where we are now.
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Effective interactions for mean-field and beyond-mean-field calculations
Why we do it this way

What about beyond mean-field calculations?
▸ Beyond mean-field calculations are mandatory in many situations:

▸ when fluctuations of collective coordinates must be taken into account;
▸ when (broken) symmetries must be restored to have good quantum

numbers.

▸ To be usable in beyond-mean-field calculations, a functional must be
strictly derived from an effective interaction.

M. Anguiano et al., NPA 696 (2001)
J. Dobaczewski et al., PRC 76, 054315 (2007)

D. Lacroix et al., PRC 79, 044318 (2009)

▸ A two-body interaction (whatever it is) can not give a satisfying
description of infinite nuclear matter (e.g. m∗/m ∼ 0.4 /).

D. Davesne et al., PRC 97, 044304 (2018)

▸ A two-body density dependent interaction is fine for mean-field
calculations but leads to formal questions and calculation’s problems
which may (or may not?) be overcome.

May

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M. Bender et al., PRC 79, 044319 (2009)
T.R. Rodríguez, J.L. Egido, PRC 81, 064323 (2010)
G. Hupin et al., PRC 84, 014309 (2011)
W. Satuła, J. Dobaczewski, PRC 90, 054303 (2014)

May not {T. Duguet et al., PRC 79, 044320 (2009)
L. Robledo, JPG 37, 064020 (2010)
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▸ To be usable in beyond-mean-field calculations, a functional must be
strictly derived from an effective interaction.

M. Anguiano et al., NPA 696 (2001)
J. Dobaczewski et al., PRC 76, 054315 (2007)

D. Lacroix et al., PRC 79, 044318 (2009)

▸ A two-body interaction (whatever it is) can not give a satisfying
description of infinite nuclear matter (e.g. m∗/m ∼ 0.4 /).

D. Davesne et al., PRC 97, 044304 (2018)

▸ A two-body density dependent interaction is fine for mean-field
calculations but leads to formal questions and calculation’s problems
which may (or may not?) be overcome.

May

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M. Bender et al., PRC 79, 044319 (2009)
T.R. Rodríguez, J.L. Egido, PRC 81, 064323 (2010)
G. Hupin et al., PRC 84, 014309 (2011)
W. Satuła, J. Dobaczewski, PRC 90, 054303 (2014)

May not {T. Duguet et al., PRC 79, 044320 (2009)
L. Robledo, JPG 37, 064020 (2010)
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Hill-Wheeler-Griffin equations

▸ Configuration mixing along a given collective coordinate q

∣Φ̃⟩ = ∫ dq f (q) ∣Φ(q)⟩

▸ Energy

E = ⟨Φ̃∣Ĥeff ∣Φ̃⟩
⟨Φ̃∣Φ̃⟩

▸ Hill-Wheeler-Griffin equations:

δE = 0 ⇒ ∫ [H(q, q′) − Ek I(q, q′)] fk(q′)dq′ = 0

H(q, q′) = ⟨Φ(q)∣Ĥeff ∣Φ(q′)⟩ energy kernels (what if Ĥeff depends on ρ?),
I(q, q′) = ⟨Φ(q)∣Φ(q′)⟩ overlaps kernels.
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Density dependent terms (with fractional power of the density2)

▸ The energy kermel E[q, q′] must be extented in C
▸ ρα

0 ⇒ E[q, q′] is a multivalued function in the complexe plane

Problem analyzed by J. Dobaczewski et al., PRC 76, 054315:

... with solutions that might not be usable with all symmetry restorations

2T. Duguet, M. Bender, K.B., D. Lacroix, T. Lesinski, PRC 79, 044320
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Choice for the effective interaction

Radical solution: no density dependent term

V̂eff = V̂2−body + V̂3−body and E = ⟨Φ∣ (T + V̂eff) ∣Φ⟩
= EH + EF + EP .

▸ 2-body part: zero-range, finite-range ?
⇒ Finite-range (Coulomb has to be treated exactly anyway...)

▸ 3-body part: zero-range, finite-range ?

Zero-range: not fully satisfying,
Finite-range: too much time-consuming,

⇒ something between.
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Two-body pseudopotential

Finite-range two-body pseudopotentials1

▸ General idea:

take a Skyrme interaction and replace δ(r) with ga(r) = e
−

r2
a2

(a√π)3

▸ Pseudopotential at “NLO”
v = ṽ0(r1, r2; r3, r4) (W01σq +B01qP̂σ −H01σP̂τ −M0P̂σP̂τ )

+ ṽ1(r1, r2; r3, r4) (W11σq +B11qP̂σ −H11σP̂τ −M1P̂σP̂τ )

+ ṽ2(r1, r2; r3, r4) (W21σq +B21qP̂σ −H21σP̂τ −M2P̂σP̂τ )

with ṽ0(r1, r2; r3, r4) = δ(r1 − r3)δ(r2 − r4)ga(r1 − r2)

ṽ1(r1, r2; r3, r4) = δ(r1 − r3)δ(r2 − r4)ga(r1 − r2)
1
2
[k∗2

12 + k2
34]

ṽ2(r1, r2; r3, r4) = δ(r1 − r3)δ(r2 − r4)ga(r1 − r2)k∗12 ⋅ k34

▸ Thanks to the finite range: P̂σP̂τ ≡ −P̂x /≡ ± 1
▸ Can be generalized at N2LO, N3LO, ...

1Cf: J. Phys. G: Nucl. Part. Phys. 44 (2017) 045106.
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Semi-regularized three-body pseudopotential

Options for terms beyond two-body
▸ Contact LO 3- and 4-body terms: SLyMR0 interaction

J. Sadoudi et al., Phys. Scr. T154 (2013) 014013, B. Bally et al., PRL 113, 162501 (2014)

▸ Contact LO and NLO 3-body terms: SLyMR1 interaction
J. Sadoudi et al., PRC 88 (2013) 064326, R. Jodon, Phys. PhD Thesis, tel-01158085

See the recent article “The shape of gold”,
B. Bally, G. Giacolone and M. Bender, EPJA 59 (2023) 58.

Works pretty well in some limited regions of the nuclear chart (e.g. for gold2).

▸ Finite-range 2-body + zero-range 3-body ⇒ pathological pairing.

▸ Semi-regularized three-body interaction: symmetrized version of

V3(x1, x2, x3; x4, x5, x6) =W3

locality
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
δ(r14)δ(r25)δ(r36) δq1q4 δq2q5 δq3q6

× δs1s4 (δs2s5 δs3s6 + δs2s6 δs3s5)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 1σ
23+Pσ

23

ga(r12)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

finite
range

δ(r23)
´¹¹¹¹¹¸¹¹¹¹¹¶

zero
range

with x ≡ rsq and rij = rj − ri .

2But if I was working for gold, I wouldn’t be a physicist.
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Comparison with finite-range Gogny pseudopotentials
▸ Gaussian form factors + zero-range DD term = D1S

VD1S(x1, x2; x3, x4) = [ ∑
j=1,2

e
− r212

µ2
j (Wj1

σ
1

τ +Bj Pσ
1

τ −Hj1
σPτ −Mj PσPτ )

+ t3 (1σ + Pσ)1τ ρα
0 (r1)δ(r12)

+ i W0 1τ (δσ1σ3 σσ2σ4 + σσ1σ3 δσ2σ4) ⋅ (k∗12 × k34)]

J.F. Berger et al., CPC 63 (1991) 365
▸ Gaussian form factors + finite-range DD term = D2

VD2(x1, x2; x3, x4) = [ ∑
j=1,2

e
− r212

µ2
j (Wj1

σ
1

τ +Bj Pσ
1

τ −Hj1
σPτ −Mj PσPτ )

+ e
− r212

µ2
3

(µ3
√

π)3
ρα

0 (r1) + ρα
0 (r2)

2
(W31

σ
1

τ +B3Pσ
1

τ −H31
σPτ −M3PσPτ )

+ i W0 1τ (δσ1σ3 σσ2σ4 + σσ1σ3 δσ2σ4) ⋅ (k∗12 × k34)]

F. Chappert et al., PRC 91, 034312 (2015)
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Overview of the fits of the parameters
Many parameters to fit... Two-body up to N3LO, spin-orbit, three-body.

Minimization of a penalty function built from:
▸ Infinite nuclear matter properties (ρsat, E/A, K∞, m∗/m, J , L)
▸ Neutron matter equation of state
▸ Simple constraints on pairing strengths (strong enough scalar pairing and

weak enough vector pairing)
▸ Binding energies of spherical nuclei
▸ Single particle energies in 208Pb
▸ Charge radii
▸ Charge density profiles3

▸ Salt and pepper.

The result is not a final set of parameters but a proof of principle that such an
interaction can give a reasonable description of nuclei.

3which helps to prevent finite-size instabilities, this is a very interesting topic but I don’t have
time to talk about it.
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Infinite nuclear matter

Properties of infinite nuclear matter
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RegMR3 0.158 -16.237 285.654 31.954 12.798 0.800
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Nuclei

Semi-magic nuclei: binding energy residuals

Comparison with Gogny interactions is not a beauty pageant
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Nuclei

Semi-magic nuclei: charge radii
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Nuclei

Spherical nuclei: binding energy residuals
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Set of 214 nuclei with Z ⩾ 20 predicted as (quasi-)spherical by D1S
www-phynu.cea.fr/science_en_ligne/carte_potentiels_microscopiques/carte_potentiel_nucleaire_eng.htm

or google it...
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Nuclei

Average neutron and proton gaps
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Nuclei

Charge and isovector densities
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Nuclei

Single particle energies in 208Pb
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Effective mass probably to low near the nucleus surface...
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Neutron droplets

Neutron droplets
S. Gandolfi et al. PRL 106, 012501 (2011)
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Neutron droplets

Pairing in symmetric and neutron matter

▸ Symmetric matter
Gogny D1S Gogny D2 RegMR3

2-body ∑q ρ̃q ρ̃q ∑q ρ̃q ρ̃q ∑q ρ̃q ρ̃q
attractive attractive attractive

3-body or d.d. – ρα
0 ∑q ρ̃q ρ̃q ∑q ρq̄ ρ̃q ρ̃q

– repulsive repulsive

▸ Neutron matter
Gogny D1S Gogny D2 RegMR3

2-body ρ̃nρ̃n ρ̃nρ̃n ρ̃nρ̃n
attractive attractive attractive

3-body or d.d. – ρα
n ρ̃nρ̃n –

– repulsive –
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Conclusion and outlooks

First density independent effective interaction which gives
▸ reasonable results at the SR approximation;
▸ no finite-size instabilities in the T = 1 channel;
▸ strong enough pairing in nuclei;
▸ possibility to do MR calculations without ambiguity.

Outlooks:
▸ Implementation in 3D codes for SR and MR calculations;
▸ Minor improvements for the effective mass, slope of the symmetry energy

and incompressibility;
▸ Average gaps in neutron matter too strong...

BUT: easy to correct using a slightly modified NLO 3-body term.
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Thanks

Thank you for your attention

▸ Main collaborators on this project:
Ph. da Costa, J. Dobaczewski, M. Kortelainen.

▸ Other colleagues involved:
Y. Gao, T. Haverinen, A. Idini, D. Lacroix, M. Martini, A. de Pace,
F. Raimondi.
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Examples of shapes of nuclei
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EDF from the semi-regularized three-body term

▸ Normal part

E = W3

8 ∫
d3r1 d3r2 ga(r12){ρ0(r2)ρ2

0(r1) − ρ0(r1)ρ2
1(r2) +

1
3

ρ0(r2)s2
0(r1) −

1
3

ρ0(r2)s2
1(r1)

− 1
4
[ρ0(r1) + ρ0(r2)][ρ0(r2, r1)ρ0(r1, r2) + ρ1(r2, r1)ρ1(r1, r2)

+ s0(r2, r1) ⋅ s0(r1, r2) + s1(r2, r1) ⋅ s1(r1, r2)]

+ 1
2
[ρ1(r1) + ρ1(r2)][ρ0(r2, r1)ρ1(r1, r2) + s0(r2, r1) ⋅ s1(r1, r2)]

− 1
6
[s0(r1) + s0(r2)] ⋅ [s0(r2, r1)ρ0(r1, r2) + s1(r2, r1)ρ1(r1, r2)]

+ 1
6
[s1(r1) + s1(r2)] ⋅ [s0(r2, r1)ρ1(r1, r2) + s1(r2, r1)ρ0(r1, r2)]} .

▸ Pairing part

EP =
W3

8 ∫
d3r1 d3r2 ga(r12)∑

q
{[ρq(r1) + ρq(r2)][ρ̃∗q̄ (r1, r2)ρ̃q̄(r1, r2) + s̃∗q̄ (r1, r2) ⋅ s̃q̄(r1, r2)]

+ 1
3
[sq(r1) − sq(r2)] ⋅ [ρ̃∗q̄ (r1, r2)s̃q̄(r1, r2) + s̃∗q̄ (r1, r2)ρ̃q̄(r1, r2)]} .
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EDF from the semi-regularized three-body term

▸ Pairing part

EP =
W3

8 ∫
d3r1 d3r2 ga(r12)

×∑
q
{[ρq(r1) + ρq(r2)][ρ̃∗q̄(r1, r2)ρ̃q̄(r1, r2) + s̃∗q̄(r1, r2) ⋅ s̃q̄(r1, r2)]

+ 1
3
[sq(r1) − sq(r2)] ⋅ [ρ̃∗q̄(r1, r2)s̃q̄(r1, r2) + s̃∗q̄(r1, r2)ρ̃q̄(r1, r2)]} .

Does not depend on the local pairing densities ! No cut-off needed !
(as long as we don’t mix protons and neutrons.)
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