Jet Substructure observables for jet quenching

p -

Ankita Budhraja

Miguel Crispim Romão José Guilherme Milhano Marco van Leeuwen presented by

Based on: arXiv: 2304.07196

Jets in vacuum vs matter

- What happens when the jet passes through a hot QGP medium/ How is the parton shower being modified due to interactions with the medium patrons?
 - How to use this information to decipher the properties of the medium?

- How is the parton shower modified?
- What are the underlying mechanisms?
- Can this modification be related to the properties of the medium?

Tool: Jet substructure techniques, use JEWEL+PYTHIA for event generation main goal: survey jet observables to identify the ones most sensitive to quenching effects.

Jet Quenching

Angularities

- $\kappa = 1$ for IRC safety, $\beta = 1$ (broadening) and $\beta = 2$ (thrust).
- varying exponent β .
- N-subjettiness

$$\tau_N = \frac{\sum_{i \in jet} p_T^i \min(R_{1,i}, \dots, R_{N,i})}{R_0 p_{T,jet}}$$

- Measures how similar a given jet is to an object composed of N subjets.
- Small values of τ_N correspond to being more N-subjet like.

$$R^{\beta}_{i,jet}$$

• Allows to smoothly understand the behaviour of soft-to-collinear emission in the jet through

Jet Grooming Algorithms

• Soft-drop Grooming

• Dynamical grooming

TimeDrop (TD)

 $t_f^{-1} \sim \kappa^{(2)} p_T$

$$x_{i \in C/A \text{ seq}} \left[z_i(1 - z_i) p_{T,i} \left(\frac{R_{i,j}}{R_0} \right)^a \right]$$

z-Drop (zD)
kt-Drop (ktD)

$$k_T \sim \kappa^{(1)} p_T$$

most symmetric splitting

which also needs the information of the ungroomed jet transverse momentum.

Type
Angularities
N-subjettiness
Jet momenta
Dynamical grooming based

• Note : most of/all these observables are defined over the groomed jet constituents, except for $(\Delta p_T)_{SD}$

- Identify main directions of the dataset that explain the most variance **> Principal components**
- To assess the quality of reconstruction, compute

$$R^{2}(x,\hat{x}) = 1 - \frac{\mathbf{E}[\|x - \hat{x}\|^{2}]}{\mathbf{E}[\|x - \mathbf{E}[x]\|^{2}]}$$

x - vector of observables and $\hat{x} = \mathbf{V} \cdot \mathbf{V}^{\mathbf{T}} \cdot x$ are the reconstructed x after rotating into principal components.

- $R^2 \sim 0 \Rightarrow$ only the average value of each observable is predicted. $R^2 \sim 1 \Rightarrow$ a perfect reconstruction.
- Most of the relations between observables already described by the first 5 - 10 principal components.

Principal Component Analysis

Principal Component Analysis (PCA)

Unquenched Sample

- 1st principal component mostly angularity type observables
- 2nd principal component jet charges
- 3rd principal component groomed momentum sharing $z'_{o}s$

Main directions of the principal components -0.04 -0.01 -0.32 -0.38 -0.40 -0.39 -0.03 -0.03 -0.05 -0.09 -0.23 0.06 0.00 -0.20 -0.11 0.00 -0.07 0.02 0.32 0.02 0.19 -0.09 -0.12 -0.10 -0.16 -0.13 -0.11 0.21 -0.17 -0.09 -0.05 -0.04 -0.10 0.02 -0.23 -0.23 -0.21 -0.17 -0.03 -0.07 -0.08 0.09 -0.08 0.09 -0.08 -0.00 0.06 -0.02 0.00 0.00 -0.09 -0.31 -0.09 -0.10 -0.16 -0.18 0.00 0.00 0.07 0.34 -0.17 0.43 0.22 0.35 0.31 -0.09 -0.03 0.32 0.30 0.24 0.13 -0.03 -0.06 -0.13 -0.30 0.07 0.00 -0.25 -0.11 0.00 -0.03 0.02 0.23 0.03 0.25 -0.28 -0.32 -0.08 -0.18 -0.09 0.15 0.18 0.11 0.11 0.27 0.18 -0.08 0.38 0.11 0.05 -0.02 -0.10 -0.06 -0.09 -0.05 -0.18 -0.02 -0.01 -0.16 0.02 -0.00 -0.02 -0.01 0.10 -0.02 0.05 0.57 0.26 -0.13 0.13 0.02 0.10 0.06 0.19 -0.22 -0.06 0.46 0.11 -0.38 -0.06 -0.02 0.02 0.02 0.06 -0.04 0.10 0.10 0.11 -0.03 -0.02 0.10 0.04 0.01 0.04 0.16 0.17 0.11 -0.21 -0.13 0.03 -0.29 -0.07 -0.07 0.05 -0.15 -0.32 -0.01 -0.11 0.66 0.06 -0.37 -0.07 -0.02 0.02 0.07 -0.03 0.06 0.06 -0.05 -0.08 -0.01 0.08 0.02 0.01 0.02 -0.01 0.00 -0.02 0.06 0.53 -0.45 0.05 -0.02 -0.06 0.05 -0.13 -0.07 -0.37 0.38 -0.11 0.08 -0.22 -0.12 -0.03 0.05 0.11 -0.01 0.06 0.02 -0.47 -0.21 0.00 0.07 -0.10 0.00 -0.06 -0.29 -0.02 -0.26 0.43 -0.04 0.27 0.03 0.09 0.09 0.09 0.06 -0.40 -0.05 0.13 -0.13 0.02 \bar{z}_{SD}^2 $\mathcal{D}_{CONST,SD} \phi_{SD} p_T D_{SD} r^2 z_{SD} y_{SD} r z_{SD} \tau_{2,SD} \tau_{2,1,SD} \tau_{3,SD} \tau_{3,SD} \tau_{3,2,SD} R_{g,TD} R_{g,ktD} R_{g,zD} \kappa_{TD} \kappa_{ktD} \kappa_{zD}$ Z_{g} $Z_{g,TD}$ $Z_{g,ktD}$ $Z_{g,zD}$ n_{SD}

> 6th and 7th principal component uncorrelated observables like rapidity and azimuth

Quenched Sample

No. of Principal Components

- Allows to estimate the effect of quenching.
- R^2 difference provides information about how well the relations are explained in the presence of quenching.
- Close to 0 being perfect reconstruction (not sensitive to quenching).
- Remarkably, this suggests that what is learnt in pp allows for very good predictions of most observables in AA.
- Large deviations for $(\Delta p_T)_{SD}$ and dynamic grooming observables.
- Also somewhat large values also for angularities.

• Use principal component coefficients of the unquenched sample to compute R^2 on the quenched sample.

 R^2 differences between Unquenched and Quenched

1	0.14	0.12	0.04	-0.02	0.00	0.04	0.16	0.12	0.13	0.08	(
2	0.14	0.04	0.01	-0.01	0.01	0.04	0.14	0.05	0.05	0.02	(
3	0.14	0.05	0.01	0.00	0.02	0.08	0.16	0.05	0.05	0.03	(
4	0.14	0.02	0.00	0.01	0.03	0.15	0.15	0.04	0.06	0.03	(
5	0.31	0.02	0.00	0.01	0.03	0.07	0.07	0.04	0.05	0.03	(
(2	$(\Delta p_T)_{\rm SD}$	$r^2 z_{\rm SD}$	r z _{SD}	$ au_{2,\mathrm{SD}}$	$ au_{3,\mathrm{SD}}$	$R_{g,\mathrm{TD}}$	$R_{g,\mathrm{ktD}}$	$R_{g,zD}$	κ_{TD}	κ _{ktD}	

Potential candidates for identifying quenching effects.

 κ_{zD}

• Optimize the non-linear maps implicit in the AE.

• R^2 increases faster, i.e. one needs fewer degrees of freedom to explains the relations between jet observables.

• With only 5 degrees of freedom, about 90 % of the relations are explained.

Auto-Encoder Analysis

Quenched Sample

- Observables for R^2 changes most due to presence of medium are $R_{g,ktD}$, $R_{g,TD}$, $(\Delta p_T)_{SD}$, κ_{zD}
- Interestingly, these differences are only sizeable for a small number of z dimensions.
- even if mean values of specific observables may change due to quenching.

R^2 differences between Unquenched and Quenched

8	0.05	0.03	0.03	0.12	0.02	0.17
9	0.05	0.02	0.03	0.07	0.01	0.15
6	0.03	0.02	0.03	0.06	0.00	0.07
3	0.02	0.02	0.02	0.04	0.00	0.03
1	0.01	0.01	0.02	0.03	0.00	0.02
D	$R_{g,zD}$	κ _{TD}	$\kappa_{\rm ktD}$	$\kappa_{\rm zD}$	$ au_{3,\mathrm{SD}}$	$R_{g,\mathrm{TD}}$

• Suggests that relations between some of the observables very similar in quenched and unquenched jets,

Unquenched vs Quenched Discrimination

- Benchmark:
 - Train a Boosted Decision Tree (BDT) for all observables.
 - Provides the most optimal discriminant based on the considered observables..
 - Gives the area under curve (AUC) of the ROC as 0.701

- $r z_{SD}$, $\tau_{2,SD}$ sensitive to QGP effects by themselves, accounting for around 0.99 of the discriminating ability.
- $r^2 z_{SD}$, $\tau_{3,SD}$, κ_{ktD} account for around 0.98 of the BDT discriminating ability.

• Pairs of observables that saturate the BDT are specifically $r z_{SD}$ with $(\Delta p_T)_{SD}, \tau_{3,SD}, \kappa_{TD}, \kappa_{ktD}$

Unquenched vs Quenched Discrimination contd...

Unquenched vs Quenched Discrimination contd...

- For observables in top panel, relations between observables are quite similar for quenched and unquenched samples.
- $r z_{SD}$, $(\Delta p_T)_{SD}$ seem different than the other pairs \Rightarrow most sensitive to quenching effects.

Impact of QGP response

• Use JEWEL with recoil to prepare quenched jet samples.

For these observables, quenching reduces the mean value while addition of recoil produces a tail.

Impact of QGP response contd...

• Dynamical grooming observables are far strongly impacted.

- Effect of recoil stronger than that of quenching itself.
- Suggests that these observables are more sensitive to large-angle radiations and/or background.

Future prospects

- The observables considered so far are ones which return a single value per jet.
- A complementary class of jet observables are *n*-point correlators of energy flow operators that are energy weighted distributions of angular separation between pairs.

• vacuum

Fig. from Ian Moult's talk

Energy-Energy Correlators

• medium

2209.11236, 2303.03413, 2307.08943, 2310.01500, 2312.12527

2209.11236

2307.08943

Modified EEC for resolving radiation in medium

- Proposal: To move beyond the standard correlators defined relative to angle and utilize the emergent medium scale, the formation time t_f of an emission.
- This make the observable collinear unsafe. Various approaches can used to regulate this for instance the use of subjet radius, Lund-based EEC.
- Goal: to see if one can obtain a clear separation between incoherent and coherent emissions in the medium.

Some options to explore :

- Correlations between two particles or correlations with the jet axis.
- background or the effect is simply nominal.

arXiv: 2312.12527

• Modifying the energy weightage from $E_i \rightarrow E_i^{\kappa}$ would work out to be better for further reducing the

19/20

- Using ML methods, a survey of 31 jet substructure observables was performed.
- the transverse substructure of the jet to be linearly correlated.
- effective degrees of freedom.
- combination involving few or most observables in the PCA and non-linear maps of the input observables that are implicit in the AE case.
- Correlations between observables are mostly resilient to quenching effects.
- BDT trained on all jet observables.

• In both the unquenched and quenched cases, the PCA identified clusters of observables that encode

• The information content of the entire set of observables can be described by a small number of

• These effective degrees of freedom do not correspond to simple observables. It is essentially a linear

• Specific observables and pairs of observables effectively determine the discriminately potential of the

